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3.1.1 Capacitor

Charge can be stored on the surface of a conductor that is
surrounded by insulator. The circuit element that is used to store
charge is the capacitor. A capacitor can be formed by using two
metal plates separated by a dielectric material (insulator) (parallel
plate capacitor).

+ + |+ + Positive Charge (+Q)
v ¢ E | | | | Dielectric _ Metal Plates

~ Negative Charge (-Q)

The amount of charge stored is proportional to voltage, and is
given by
Q=CV

with "Q" understood as having +Q on the positive plate and —Q
on the negative plate, and C is the capacitance, and the unit is
farad (F), with the dimension of [coulomb/volt].
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Capacitance

The capacitance of the parallel plate capacitor can be derived from:
 Q = ¢EA (Gauss’s Law)

- E=V/d
c Q=0CV
Result is: C= A ke
where d d
C = capacitance (in farad, F)
Q = charge (in coulomb, C)
V = voltage (in volt, V)
E = electric field (in V/m) Michael Faraday
g, = permittivity of free space (vacuum) 1791 - 1867
= 8.854x10712 F/m
e = ke, = permittivity of dielectric material
k = dielectric constant (relative permittivity)
d = distance between plates

A = cross-sectional area of plates

Example 3-1: Mica capacitor has k = 5. If A = 0.5 cmx0.5 cm, d
= 100 pm, then C = 5x8.85x10712x0.005x0.005/100x10° = 11 pF. 5 4



Capacitor Voltage and Current Relationship

+ Vc(t) -
Fundamental equation Q(t)‘ -q(t)
at) = Cvlt) © | o
C

Current is the change in charge over time, and the differential

form gives the (time domain) I-V relationship of the capacitor:

— m — C dvc(t)

| (t
{8 =" dt

Integrating once, we get:
t

V(t) =v(0)+ %jic(r)dfc
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Capacitor Blocks DC, Passes AC?

The capacitor dielectric, which is an

+ —_—
insulator, allows no moving charges V(D)
to pass through it. A capacitor —— C |}
therefore passes no current i(t) i(t)

whatsoever: DC, AC or transient.

However, modeled as a black box and viewed from external, the
capacitor does give an illusion that a current passes through it,
which could be a useful way of reasoning.

A capacitor eventually blocks a DC current because the capacitor
voltage cannot increase forever. For a DC circuit, the capacitor is
charged to a max. voltage set by the circuit. After which current
stops and the capacitor behaves like an open circuit.

3-6



Energy Stored in Capacitor

The energy stored in a capacitor is dependent on its charge Q,
voltage V, and capacitance C.

To move an infinitesimal charge dg from the negative plate to the
positive plate (from a lower to a higher potential), the amount of
work dW that must be done on dq is dW = vdg.

This work becomes the energy stored in the electric field of the
capacitor. In order to charge the capacitor to a charge from 0 to
Q, the total work required is

w(Q) Q Qg 1 Q2
W = dW = dq=| —=dq==—

Hence the energy stored in a capacitor is
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Example 3-2

Example 3-2:  Given v (t) across C as shown, find i(t) and i(1 s).

Soln. Fort<2s:

. dv (t)
I(t) =C—==
(t) it
=2x @
1
=40A
Similarly, for2s <t < 4s:
i(t) =-40A
and
i(1s) =40A

40
20

-20
-40

v(t) C=2F
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Example: 3-3:

Soln:

Example: 3-4:

Soln:

i(t)

i(t)

Examples 3-3, 3-4

Given v (t) across C as shown, find i(t).

i@f_+

C=2F v(t) =2tV

=2Fx2V/s=4A

Given v (t) across C as shown, find i(t).

R

C=2F vV (t) = 2sin(t) V
i(t) :{: -

_ ><d(Zsin(t)):_ y
2 i 2 x 2cos(t)

= —4cos(t) A
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Examples 3-5, 3-6

Example: 3-5: Find the energy stored in the capacitor below.

+
C=2F__—V.=2V
Soln:
1 1
E. = 2CVC2:2><2><22

=4)

Example: 3-6: For C = 2 F, find v(1 s) given that V(0) = =20V
and i(t) = 40 A.

Soln: 1t
v() =v(0)+ c [i(t)dt

11
= 20 + - [40d<
20

= —20 + 20 = OV 3-10



3.1.2 Inductor

When current passes through a medium, magnetic flux ¢, and the
unit is weber (Wb), is produced that bears the relation

o(t)  =Lxi(t)

where L is the inductance, and the unit is henry (H). The circuit
element that stores magnetic flux (magnetic energy) is the
inductor. An inductor can be formed by wrapping a coil around a

ferromagnetic material.

Faraday's Law of Induction:

v =90

dt
and do() d
|
t) = L
A TR

di,

=L+
dt
Integrating once, i(t)

| = 2nr

I, (t)

3 &
L V,(t) ’/7/4 m ‘\\\ N

A = na?

. 1t
=i(0)+= d
If( )+L£V£(T) T -



Inductance

Let the coil has N turns. When the current i (t) passes through
the coil, the effective current is increased by N times, and the
magnetic flux thus produced is also increased by N times. The
inductance L of a coil inductor can be shown to be

|=2nr

B uNZA
o

where N = number of turns
A = cross-section area of magnetic flux (= na?)
| = length of magnetic path (= 2xr)
u = permeability of material (H/m)
1, = permeability of free space = 4nx10~7 H/m

A=ma2
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Energy Stored in Inductor

Suppose that an inductor of inductance L is connected to a
variable DC voltage supply. The supply is adjusted so as to
increase the current flowing through the inductor from zero to
some final value I. As the current through the inductor is ramped

up, a voltage v, = L— appears across the inductor, which acts to

oppose the increase |n the current. Clearly, work must be done
against this voltage by the voltage supply in order to establish the
current in the inductor. This work becomes the energy stored in
the magnetic field of the inductor. The work done by the voltage
supply during a time interval dt is

di
dW = Pdt = Ulildt = <L d_tl) lldt = Llldll

The total work required is
w(I) I 1
W=j dW=] Lildil=—L12
0 0 2
Hence the energy stored in an inductor is

15—1L12—1q1>1—1q52
2 2 210 3-13




Examples 3-7

Example: 3-7: Find ¢(t), v,(t) and E,(t) of the inductor below.

HQ)

=2t A
L=2 H Vi(t)
Soln:
o(t) = Lxi,(t) = 2x2t = 4t Wb

v,(t) :L‘”é—(tt):zxz:4v

E(H) - %Lig(t)z _ %x 2% (2t) = 4t J
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Examples 3-8

Example 3-8:  Given i,(t) through L as shown, find v,(t) and
V,(1.5s). (0

+
L=0.5H V,(t)
Soln. Fort<2s: =

di(t)
dt

=0.5><2—0
1

v(t) =L

=10V

/N
VAR
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3.2 Sinusoidal Excitation
In DC analysis, the driving forces are DC voltages/currents.

In many other cases, the driving term is a sinusoid, such as the
AC (alternating current) voltage obtainable from the wall socket,
and we are interested in the sinusoidal (AC) steady-state
response. The steady state is the state of the circuit after a long
time has elapsed since the application of the sinusoidal source.

A sinusoid wave is characterized by its oscillation frequency,
magnitude and phase.

AT A\ Vai(D) . Veo(t)
[\ N\
\/ \VARVE

A

v (t) = Asin(w,t) V,,(t) = Bsin(w,t+0)

o=2xf (angular frequency in radian/sec), f (frequency in hertz), T

= 1/f (period in sec), 0 (phase in radian or degree).
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3.2.1 Driving Capacitor with V cos(wt)

Consider driving a capacitor C with a sinusoidal voltage source:

v(t) =V.cos(wt) o - ) e
= i —Cd‘égt) — _oCV_sin(wt) Vcos(ot) C

Recall trigonometric identities:

V. /
sin(6+¢) = sinbcosd + cosOsing / \/S(t) /
cos(6+¢) = cosbcosp — sinbsing
Hence, \/
i(t) = oCV, cos(ot + n/2) —V-
The argument of i(t) is +x/2 radian 5 :\mCVs
earlier than v (t), and the capacitor i(t)
current leads the capacitor voltage / §<—2> >t
by n/2 radian (90°). —@c7\t//s i
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3.2.2 Driving Inductor with V cos(ot)

Consider driving an inductor L with a sinusoidal voltage source:

v(t) =V,cos(ot) N b0
. 1 N vt = @) L
— i) = [jvs(t )dt V cos(mt) N
LN V,sin(ot) + constant* ’
ol

=<

= i(t) = i x V, cos(ot — nt/2) / \/S(t) / R}

The argument of i (t) is ©/2 radian \/v _

later than v,(t), and the inductor

current lags the inductor voltage by A
n/2 radian (90°). \VS/ODL' N i, (t)
LA
* DC component ignored |r/2 \/
for AC analysis —Ve/ ol
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Example 3-9

Example 3-9: Given an AC voltage source v (t) = V.cos(wt) with
amplitude 10 V. Compute the current passing through a
capacitor of 10 uF if the frequency is (a) 1 kHz; (b) 10 kHz;
and (c) 100 kHz.

Soln.: dv (8 4(10os(2xf0))
: v (t cos(2mn
—C s\ 4
(1) C 4t On x m
= —10u x 10 x 2xf x sin(2nxft)
(a) i(t) = —0.628sin(2r1kt) A
(b) i(t) = —-6.28sin(2n10kt) A
(©) i(t) = —-62.8sin(27100kt) A

Note that a capacitor serves as an open circuit at low frequency
and short circuit at high frequency.
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Example 3-10

Example 3-10: Given an AC voltage source v (t) = V.cos(wt) with
amplitude 10 V. Compute the current passing through a
inductor of 10 pH if the frequency is (a) 1 kHz; (b) 10 kHz;
and (c) 100 kHz.

1 1
In.: ' = — = —
Soln ip(t) 3 j vs(D)dt Ton 10 cos(2mft) dt
= TOn 2’lesin(Z'nft)
(a) i(t) = +159sin(2r1kt) A

(b) i(t) = +15.9sin(2n10kt) A
() i(t) = +1.59sin(27100kt) A

Note that an inductor serves as a short circuit at low frequency
and open circuit at high frequency.
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3.2.3 Driving RC Circuit with V cos(ot)

Consider driving an RC circuit with v (t) = V.cos(wt). KVL gives

v (t) = Ri(t) + v ()

+
dv (t vs(t) =
d’E ) o(t) V.cos(wt) N

—~  V_cos(wt) =RC

—, Qv (t) 1
dt

To solve the above equation, we need to assume that v (t) takes
the form of v (t) = Acos(wt) + Bsin(wt), and we have to deal with
both cos(wt) and sin(wt). The computation is very tedious (refer
to Appendix). The solution contains both a transient response and
a steady-state AC response, only the latter is covered in this
chapter.

v (t) = SCOS((ot), T =RC

Qn. Do we have a more efficient way to arrive at the answer,
especially one that does not need to solve differential
equations?

Ans. Yes, we do. But we need to use complex humbers. 3-22
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3.3 Phasor Analysis

Im A
1 [ 0 (Phase)
\ ot i \ V; (Magnitude)
=0 ™ L 7t
Phasor Representation Sinusoidal Waveform
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3.3.1 Complex Number and Operations

The simplest example of an imaginary number is the solution to
x*+1=0

X =+/-1

The number -1 is not an integer, nor a real number, and it is
regarded as an "imaginary" number in the olden days, and the
name passes down to present time.

and

In computation, we could just treat J-1 as an authentic number,
and remember that+—1x+/—1 =1 . As this number occurs very
often in mathematics, it is assigned the symbol "i". However, in
electrical/electronic engineering, "i" is reserved for current, and

we use the symbol "j" instead:
o=V

and
jxj =-1
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Complex Number: x + jy

Consider the quadratic equation:
X*+X+1=0

The roots are

X, biJb’—dac _-1xV1-4 _ 1 .3

2a 2 2 "2

The number -1/2 + j\/§/2 consists of a real part (—1/2) and an

imaginary part (j \/§/2), and is called a complex number. The
usual symbol for complex humber is "z";

Z =X+ ]y

where x and y are real numbers, and
Re(z) =X
gm(z) =y
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Complex Number: Addition and Subtraction

Consider two complex numbers z; and z,:

Z, =a+jb

Z, =C+jd

Addition and Subtraction of Complex Numbers:
z,+z, =(@xc)+j(bxd)

Example 3-11: Given z; = -3 + j7 and z, = —j12,
compute (a) z, + z,, and (b) z, — z,.

Soln.:
(a) (-3+j7)+(0+-12)=(-3+0)+j(7-12)=-3-35
(b) O0+-12)-(3+j7)=(0--3)+j(-12-7) = +3 —-j19
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Complex Number: Multiplication

Multiplication of Complex Numbers:
Z,xZ, =(a+jb)x(c+jd)
= ac + jad + jbc — bd
= (ac — bd) + jx(ad + bc)

Example 3-12: Compute (=3 + j7) x (8 + j4).

Soln.:
Z,xZ, =(=3+j7)x(8 + j4)
= =3x8 + j(—3x4) + j(7x8) — 7x4
= -52 + j44
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Complex Conjugate and Modulus

Before discussing division of complex number, let us introduce the
complex conjugate of z, denoted as z*, first. For
Z =a+ijb

Z =a-—jb

A complex number z when multiplied with its complex conjugate
Z* gives a real number:

zxZ" =(a+jb)x(a—-jb)=a%-jab + jab + b?
= a? + b’
The modulus of a complex number z, denoted as |z|, is defined as

|z |2 =zxZ" =a2+ b?

lz| =4Va?+b*> =0
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Complex Number: Division

Division of Complex Numbers:

Z _a+jb a+Jb c—jd

=
Z, - c+jd C+Jd c-jd
_ (ac +bd) + j(bc —ad) :ac+bd+.xbc—ad
c’+d c’+d c’+d

Example 3-13: Compute (-3 +j7) / (8 + j4).
Soln.:
-3+j7 —3+]7 8-j4
8+j4 8+j4 8- j4
_ (—24 + 28) + j(56 +12) _ 4+ j68
8% + 42 80
=0.05+j0.85
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Complex Plane, Rectangular and Polar Forms

Complex numbers are conveniently drawn on the complex plane
(z-plane). The x-axis is the real axis (Re-axis), and the y-axis is
the imaginary axis (Jm-axis).

Jm z-plane
AN .
N I . a+jb
: ///: r=+vJa’+b* >0
r .
/\/e/ i rsin® £ane — 9
——> Re a
0 rcos6 a
On the z-plane, complex numbers can be expressed as
Z =a+jb rectangular form
or Z = rcoso + jrsind
with T =|z|=va’+b* >0
0 =tan(b/a)

Re(z) =a=rcoso

IJm(z) =b=rsind
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3.3.2 Euler's Equation of Complex Exponentials

From study of calculus (using Taylor and
Maclaurin series expansions), we learn:

x% x3 x* x°

X — cee
e —1+x+2!+3!+4!+5!+

Euler
_ x3  x°
sin(x) =x—§+a—---
x? x*
cos(x) =1——r+———-
Define an A
i} z2 z3 z* Z° Leonhard Euler
851+2+2!+3!+4!+5!+--- 1707 — 1783
For z = jO
- 0)?  (6)° (o)t  (j)®
jo _— : (]
el =1+ () + o1 + 3 + 21 + g +

82 94 93 95
:<1—E+Z_“.)+]<H_§+a_.“ )

= cosf +jsin6 https://en.wikipedia.org/wiki/Leonhard Euler — 3-32



https://en.wikipedia.org/wiki/Leonhard_Euler

Euler's Equation of Complex Exponentials (cont.)

Euler's equation:
e/ =cosh +jsinb
The complex exponential function e/? can be viewed as more

fundamental than the sin & and cos 6 functions, which are both
derivable from e/?:

cos @ = .‘Re(eje), sin @ = me(ej@)
In particular
elm+1=0
The Most Beautiful Formula in Mathematics

Compared with Einstein’s equation
E = mc?
The Most Famous Equation in Physics
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Complex Numbers on Unit Circle

Example 3-14: Common complex numbers on the unit circle.

el

ejn/6

ejn/4

—e’=1

= c0s 30° + jsin30°

=2+j1
NERRNC

= c0s 45° + jsin45°

1.1
VARG

=c0s90° + jsin90° = j
=c0s180° + jsin180° = -1
=c05270° + jsin270° = —j

Im

A gin/2 unit circle

- —

~ <

@t =1245°

7/

N
450 /// e =1.,30°

7’ 27\
- \
7 -

5 \
- > e
300 i+l
//
/
/
/

. s
e—]n//Z 7

1,270° =1/ —90°

= e/% = cosH + jsinb
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Polar Form

A complex number z in polar form can be written as
z =re¥ r>0

In electrical/electronic engineering, the polar form is usually
written as

7 —r/0 r>0and 20 = e/?

The modulus r is better known as the magnitude of the complex
number, and 0 as the phase.
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Multiplication and Division in Polar Form

Multiplication in polar form:

Z, =27,x2, =re" xre"
= rr,e%*%)
or 7 =1/0,xr,20,
=r,Z(0, +0,)
Division in polar form:
23 _ ﬁ _ rle;i(h
z, re"
= (1, /r)e’*™
or z, = %
2 2

= (I’l / r2)4(91 — 92)
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Example 3-15

Example 3-15: Given z;, = 2 + j6 and z, = —4 — j3. (a) Write the
polar form of z, and z,; (b) compute z,z, in polar form and
convert the answer into rectangular form; and (c) compute z,/z,
in polar form and convert the answer into rectangular form.

Soln.:
(@) r, = v2°+6%=6.325 s
0, = tan—1§ =71.57° A
2 511 /
Z, ~6.325./71.57° ’
I’z :\/42+32:5 _|5 - 5|>fRe
0, = tanl_—i =216.87° 2,
z,  —=5/,21687° (NOT5:3687°)

Special care is needed in converting the complex number in
quadrants 2, 3, and 4.
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Example 3-15 (cont.)

(b) Z,xZ, =(6.325x5)+(71.57°+216.87°)
=31.63,288.4°=31.6/£-71.6°
=31.63 x (cos(288.4°) + jsin(288.4°))
=9,98-jx30.0

© & - % £(71.57° - 216.87°)

2
~1.265./-145.3° =1.26./ —145.3°
—1.265 x (cos(~145.3°) + jsin(-145.3°))

=-1.04-jx0.72
Note that usually answers with 3 significant digits are good

enough, and we should use 4-digit accuracy for computing
intermediate results.

3-38



3.3.3 Complex Sinusoid as Excitation

Qn. What is the connection between complex number and
circuit analysis?

Ans. The ingenuity is to replace the real sinusoidal source
V.cos(wt) by the complex sinusoidal source Vet

Let complex voltages and currents be expressed as {v(t)}¢
and {i(t)}¢:
Vo(t) = Vcos(mt) — {v,(t)}¢ = Vet

Use {v.(t)}¢ to compute the capacitor current:

¢
G —cHeOY _cdpoy
o vy @&
= joCV.e™

=Velet

yd

{i(t)3

=

— joC-{v, (O}
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Re({i.(t)}¢)=i.(t) and 1/joC Resembles Resistance

Two observations are in place.

(1) The real part of {i. (t)}¢ is the correct response to the original
real source:

{i_(t)}€ = JoCV(cos(wt) + jsin(wt))

= —oCV, sin(ot) + joCV, cos(wt)
Re({i.(t)}¢) =i(t) = —oCV,sin(wt)

(2) The ratio of complex voltage to complex current resembles a
"resistance":

{v.()yc _ 1 Y {dO¥
(.0 joC e &) Joc

+

j -

The ultimate simplification is to use phasors.
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Rotating Vector

Consider x(t) = Acos(wt), and let us represent it as a rotating
vector sweeping on a circle.

_____

\ Acos(mt)
\ \ Acos(wt+0)

Acos(wt) o 1 Acos(wt+0)
1 1
>l v

X(t) can be thought to rotate on the complex plane, with
{x(t)}¢ = Aelt, Each {x(t;)}¢ is a point on the circle with
radius A, and the real part is x(t,).
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3.3.4 Phasors

If x(t) has an initial phase, say, x(t) = Acos(wt+0), it can be
represented by the right figure of the previous page. Note that all
subsequent positions of the vector are known once the initial
phase is determined, as the angular frequency o is given.

We can represent two functions, a(t) = Acos(wt+0) and b(t) =
Bcos(wt+¢), having the same » on the same diagram, specifying

only the initial positions. I

L : C 1
{a(t)}® =Aee =Ae™ '\
{b(t)}¢ =Be’e™ =Be!" N A

We then define the phasors of a(t)

and b(t) as i‘ > e
A=A AL o -
B =Be® =B/

_——
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Operations of Phasors

It is clear that the term phasor refers to a rotating vector
specified by its initial phase. For the time being, we use boldface
letters to indicate phasors. Now, real signals a(t) and b(t) are
represented as phasors A and B that are complex numbers:

A - A0 =a, +]a,
Operations of phasors follow that of complex numbers. For addition:
C -A+B =Czp =G +]G
=(a,+b) +j(a, +b,)
Wlth 2 2 2 2
C =4C +GC, :\/(a1+b1) +(a, +b,)
P —tan'S% —tant® D
C, a, +b,
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Example 3-16

Example 3-16:
Let a(t) = 10xcos(30t+500)
b(t) = 5xcos(30t+125°)
Find c(t) = a(t) + b(t) using phasor method.
Evaluate c(t) att = 0.1 s.

Soln.:

a(t) = 10xcos(30t+50°) = A =10.50°

— 6.428 + j7.660

b(t) = 5xcos(30t+125°) = B  =54125°

C =A+B =3.560+j11.756 = 12.28/73.15°

—  (t) = 12.28xcos(30t+73.15°) !

c(0.1) = 12.28xcos(3 rad +73.15°) Aé
= 12.28xc0s(3 + nx73.15°/180°) 0O

= 12.28xc0s(4.277) = -5.18

b(t)

~2.868 + j4.096

a(t)

c(t)
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Examples 3-17, 3-18

Example 3-17: Let a(t) = 10xcos(30t+50°) and d(t) =
ol 5xsin(30t+125°), find e(t) = a(t) + d(t).

oln.:
Note that sin(0) lags cos(0) by 90°. By writing sin(6) = cos(6 — 90°),
we can express d(t) = 5xcos(30t+35°). The phasors of a(t) and d(t)
are now compatible. Hence,

D =5/35° —4.096+j2.868
E -A+D =10.524+j10.528 =14.9/45.0°

= e(t) =14.9cos(30t +45.0°)

Here we can't use sin(06) = cos(90°— 06) as d(t) would be 5xcos(—30t
—35°) then, resulting in a vector rotating in the opposite direction.

Example 3-18: Let a(t) = 10xsin(30t+50°) and f(t) =
5xsin(45t+1259), find g(t) = a(t) + f(t).
Soln.:
a(t) and f(t) have different frequencies and cannot be added
together using phasors, and g(t) remains
g(t) = 10xsin(30t+50°) + 5xsin(45t+125°) 3-45



Example 3-19

Example 3-19: Let m(t) = 10xsin(30t+50°) and n(t) =
5xsin(30t+125°), find k(t) = m(t) + n(t).

Soln.:

Method 1:

m(t) = 10xsin(30t+50°) = 10xcos(30t-40°) = M = 10/-40°

n(t) = 5xsin(30t+125°) = 5xcos(30t+35°) = N = 5./35°

K=M+ N = 10£-40° + 5.35° = 7.660 — j6.428 + 4.096 + j2.868
= 11.756 - j3.560 = 12.3/-16.8°

= k(t) = 12.3cos(30t-16.8°) = 12.3sin(30t+73.2°)

Method 2:

Note that m(t) and n(t) are just a(t) and b(t) replaced with the
sine function (or offset by —90°). We may simply add A and B to
obtain C as in Example 3-16, but remember to put the answer
with reference to sine, that is,

k(t) = 12.3sin(30t + 73.2°) o



d/dt - jo and [d\ > 1/jo

For _
{a(t)}* =Ae™
we have
d{a(t)}¢ _ d Act) = jo(Ae™
dt dt( ) ( )
which looks as if the differential operator d/dt is replaced by jo:
d :
— @
dt J
Likewise, the integral operator |dA is replaced by 1/jo:
t
fdv - i
jo

By using phasors, differential equations are turned to algebraic
equations that are much easier to solve.
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3.3.5 Impedance and Admittance

Differentiation and integration are due to the presence of
capacitors and inductors. Let us reconsider driving a capacitor C
with a voltage source v (t) = V.cos(wt+0) = v(t), and

{v.()}¢ =Vge*

Now, the capacitor current (the response) due to the forced
oscillation must have the same frequency, that is,

{i.(t)y =I1e”

In fact, q
. . iot o i
{0y =C (V&™) =joCve™
giving v .
_C =7 (i __
I Jo) joC

The ratio V./I. = z(jo) is NOT a phasor, but is the impedance
(resembling resistance) of the capacitor C.
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Admittance of Capacitor

Time-domain analysis and phasor analysis can be summarized as
shown in the figures below, and from the phasor diagram, I_
leads V. by 90° is immediately observed.

JIm
I A
+ Yi(t) YI e S,
v(t) &) C V, 1/joC ST N
- I, // \vc \\
e = - s Re
Time-domain analysis Phasor analysis L '
Rewrite the I-V characteristic of the capacitor as

I

v =y(jo) =]JoC

C

and y.(jo) is the admittance (resembling conductance) of C.

The capacitor current leads the source voltage by 90° is easily
observed by writing

| = JoCV,_

C
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Impedance and Admittance of Inductor

Consider driving an inductor L with v (t) = V.cos(wt+0) = v,(t):
{v.()¢ =ve
The inductor current will have the same frequency as v (t):

{,(0y =Le
1

. 1 t i - - jot
and i,y =-[vedn =5 Ve
> 7 =700) = jol.
4
The impedance of the inductor is joL, and the admittance is
L _yi _ 1
v o YAe) ~ ol
1 .
I =V _ ]
— / J(DL / = a Vg

The inductor current lags the inductor voltage by 90°.
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Phasor Analysis of Inductor

Time-domain analysis and phasor analysis of the inductor is
summarized in the figures below.

; e L1,
Va(t) L v, jol

Time-domain analysis Phasor analysis

From the phasor diagram, I, lags V, by 90° is immediately
observed:
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Impedance and Admittance

Impedance and admittance are equivalent to resistance and
conductance in resistive networks, and they are not phasors.
They are collectively known as immittance.

In general, immittance are complex, instead of just being
imaginary as in the case of a capacitor or an inductor.

Impedance: Z =R+ jX Risresistance, X is reactance
Admittance: Y =G+ jB Gisconductance, B is susceptance

Reactance of Capacitor and Inductor (Unit is Q)

: 1 :
Capacitor: Z. =-—"—"- =+X X =—— —
° : joC e - ‘ ®C

Inductor:  z, =JoL =+HX, = X, =+olL
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3.3.6 Phasor Analysis

Procedure of Phasor Analysis

(1) Express all time-dependent terms as cosine functions and
then convert them to their phasor equivalents, for example,
V.cos(ot+6) — Vg (=V,£0). Voltages and currents are no
longer functions of time, but are phasors. Moreover, the
symbol of sinusoidal source can be replaced by the symbol of
DC source.

(2) Substitute the capacitor C with 1/joC and the inductor L with
joL as the impedance, while the resistor R remains
unchanged. A phasor circuit is then obtained.

(3) Treat the phasor circuit as a resistive circuit, and apply the
same DC analysis methods, e.g., KCL, KVL, superposition, to
solve for the unknown parameters in terms of phasors.

(4) If time-domain solution is needed, convert the parameters in
phasors back to their time-domain equivalents.

3-53



Common Practice in Phasor Analysis

As phasor analysis is the principal method in analyzing sinusoidal
steady state, engineers want to be more efficient in notations.

(1) \Very often, phasors are not written in boldface. For
convenience, we may just use the time-domain symbol as
the phasor.

For example, for v (t) = V.cos(wt+6), the phasor should be
V,, but we may use V.20, or simply, V. (if 6=0) to
represent the phasor instead.

(2) Capacitors and inductors are not represented by 1/joC and
jol, but are still represented by C and L, but understood to
use 1/joC and jolL in actual computation.

Note: Real world signals must be expressed in cosine functions
and not sine functions before converting to phasors. We get back
to the real world by taking the real part, i.e., the cosine portion.
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Phasor Analysis of RC Circuit

Equipped with phasor analysis, let us reconsider the RC circuit in
p. 3-22.

vs(t) =
V.cos(wt) ~

In the phasor domain, R and C (R and 1/joC) form a voltage

divider, and
1/ joC

° "R+1/joC ®

= V, = _1 V,
1+ joCR

In symbolic form, the above is already the answer!
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Phasor Analysis of RC Circuit (cont.)

If numerical values are given for V, f, R and C, then we could
obtain the numerical value of V,. Hence, we need to compute

1

V, = Y
° 1+4+jwCR®
1
= VS
V1 + wZCZRzA(I)
TVTH wZCZRZ )
where ¢ = tan™"(wCR)

If time-domain result is needed, then convert the V, phasor back
to its time equivalent:

V
v (t) = 5 cos(mt — ¢)
V1 + @2CRR?
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Example 3-20

Example 3-20: Solve for v (t) of the RC circuit below.

1 kQ

+
10cos(2n1kt+25°) &) 1 uF

yd

i(t)

=

Soln.:

+

Vo(D)

Although the source has an initial phase of 25°, we may still use
10 as the source (instead of 10..25°), and just remember to
reference to +25° when we put down the final answer.

v - 1
° 1+j2nx1k x1pux1k

=1.57,-81°
V{t) =1.57 cos(2rn1kt — 56°)

x10 =

10

1+ 36.283
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Example 3-21

Example 3-21: Solve for R and L of the circuit below, given

f=100 Hz.
i(t)=cos(wt—10°) R o,
+
v(t)=cos(wt+40°) @ L % Vo(t)
Soln.:
Clearly, when written in phasor notation we have
v =R +joL = £40° 5o = 0s50° + jsin50°
I Z-10°
= R =cos50° =0.643Q
oL =sin50° =0.766
_ 0766 4 5omH
21t x100
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Example 3-22

Example 3-22: Compute the current i(t) and the output voltage
v, (t) of the following circuit.

® ;

+

v(t)=100cos(1000t) (A = V(D)
- C=0.2 mF| R=10 Q

- -

A\AL

Soln.:
One may choose to compute the impedance of the L and C first:

v(t) —100.0°
joL  =3j1000 x5m = j5Q

1 1 1

- = =50
joC j1000 x0.2m j0O.2
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Example 3-22 (cont.)

i5Q

Phasor circuit: MM

2

—>
100.£0° (‘i) i -5 O

10 Q=

>
>
>
o

=

z =35+(35]110) =35+
- -10+320
4+1

_V _ 100
~Z  J5./26.57°

=35

I

i(t) =44.7cos(1000t —26.6°) (A)
V. =Ix(55[]10) =Ix(2-j4)

o

—j5+2—j4

—-j5x10
10 - 35

+

Vo

o J10 2+

2—-3 2+]

=2+j =+/5226.57°

=44.72/ —26.57°x4.472/ - 63.43°

V,(t) =200 cos(1000t —90°) (V)

— 205/ —26.57° =44.72/ - 26.57°

=200~£-90°
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Example 3-23

Example 3-23: (1) Find and plot all impedances on one z-plane;
and (2) find and plot the current i(t) and all voltages on a

second z-plane.

ity tVeo Ve
———w——M
- 40 159 mH
v (t) = 1242 cos(377t + 909) 6‘9 1.33 mF
Soln.:
(1) z, =joL =j377x159m =+j6
7z = oo 1 =-)2
c joC j377 x1.33m
Z  —R+jol+ 1 4114

joC

Impedance Diagram

JIm
+ A
V. 1 Z£=+j6 Q
Z=4+}4 Q
R=4 Q)
> Re
0
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Example 3-23 (cont.)

2
(2) A _122290°  _1242290° _ 3,450 (p)
=7 4+ j4 4J2./45°
Vo —IxR  =3,/45°x4  =12/45° (V)

V, =IxjoL =3,45°xj6 =18,135° (V)
V. =1/joC =3,45°x—2 =6--45° (V)

Im »=377 rad/s
VE AN \
Vv

R
18,135°

12450 Phasor Diagram
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Example 3-24

Example 3-24: Find the unknown elements of Z if it consists of
two components in series.

i(t) 11.3cos(800t+140°) A

> |
vy(t) *
283cos(800t+150°) V 2
-

l

Soln.
(1) Transform v (t) and i(t) into phasors V. and I:

V.  =283,150°

I =11.3.2140°
(2) Find z:
V. 283£150°
=% = =25.04.10°
: I 11.32140°
=24.66 + j4.348 Q
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Example 3-24 (cont.)

(3) Because z has real and imaginary parts, and the two
components are in series, and

Rand L gives R + jolL
Rand Cgives R+ 1/joC =R -j/oC

Hence,
Z =R+ jolL
(4) Equate
24.66 + j4.348 = R + jx800xL
we have
R =24.7Q
L =339 5 44mH
800
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Example 3-25

Example 3-25: Using the same figure as in Example 3-24, find Z if
it consists of two components in parallel.

Soln.

For the two components to be in parallel:

RxjoL olR(oL+jR)

R+ joL R* + w1’

Solving this problem using impedance is quite tedious, but rather
straightforward if admittance is used.

Yy = Vi =0.03994~ -10° = 0.03933 - j0.006936

Rand L gives R||jolL =

S

1 1
R joL

= R =2540
1

_ _ 180mH
800x0.006936 o
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Example 3-26

Example 3-26 (Nodal Analysis): Find v,(t) and i,(t).
30 Vx(t) 0.5mF

—>_ W |
+| i) '
10cos(1000t) (&) 3 4mH & 2i(t)
Soln.:
Z, =joL  =jx1000x4m =ij4Q
Z.  =1/joC =-§/(1000x0.5m) =—j2 O
?52 Vx _jIZIQ
Il |“‘I I I
10./0°V %} 3j40 &

=
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Example 3-26 (cont.)

KVL along the left branch yields
V. =10 — 34 (1)
Apply KCL to node V., :

Vi Ve—21
—] d —
1T T T2
! j4 -2
10 1
S 7—j4 6
From (1) V., =10 - 3(1.0770 +j0.6154) = 7.022(—15.3)°

Iy

0
= (7 +j4) = 1.0770 +j0.6154 = 1.24229.7°

- i;(t) = 1.24cos(1000¢ + 29.7°) A

v, (t) = 7.02cos(1000t — 15.3°) V
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Example 3-27

Example 3-27 (Superposition): Find v,(t) of the circuit below.
v 1H 20 025F

ﬂﬂﬂ___*N+___4I .
1Q§

i(t)

CA\T v(t)
3cos(2t+300) A

Z 6cos(3t) V

INVN

=

Soln. Note that the two sources have different frequencies, and
we may use superposition in combination of phasor analysis
to solve this problem.

(1) Find V, due to I first (o = 2):

j2 2 —j2
3430°¢ 1

=

VX

A\AL
INVN
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Example 3-27 (cont.)

The impedance of the inductor cancels that of the capacitor, and
V, =3/30°x(1]]2) =24£30°
= vx(t)\i(t) = 2cos(2t +30°)

(2) Next, find V, due to V (o = 3):

VX
| . NN J
13 2 1333 . )
1Z () 620
L
v _ | 1 | 6./0° 6.400 _ 6.,0°
X 1+2+3j3-31.333 3+j1.666 3.432.,29.06°
=1.75,-29°

vx(t)\v(t) =1.75cos(3t — 29°)

(3) v(t) = vx(t)\i ~ vx(t)\v(t) = 2cos(2t + 30°) +1.75cos(3t — 29°)
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Example 3-28

Example 3-28 (Norton's Equivalent ): Convert the circuit in the
dotted area into its Norton's equivalent circuit and find v(t).

_|_

Z210Q  v(t)

—
o
o
(@)
O
[92)
A~
—
o
o
o
N8
<
—@
Ul
o 3
RO I
3
T
A\NL

Soln.:
Z, =joL  =jx1000x5m =ij50Q
Z. =1/joC =-j/(1000x0.2m) = -j5Q
50
m I, = 1% = —j20A
100V —j50Q v I, : :
eq - . . -
j5+(-35)

=
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Example 3-28 (cont.)

Use the Norton circuit to compute v(t):

=10Q V

L.

N

o

>
9
A\NL

V =-j20x10
=200~/ - 90°
= Vv(t)  =200cos(1000t —90°) V

Note: The equivalent circuit is only good for one particular
frequency!!!
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Example 3-29

Example 3-29 (Source Transformation): Find v,(t).

B v 20./0°V
M x| )
“ — >

jZACP 1503 | 50 MiA

-

Soln.: There are many ways to solve this problem, and let us work
out two Norton's equivalent circuits as shown.

(1) Norton's equivalent of the left circuit:

: 5 Q
Iscl — J15 J2=]1.5 m
j15+ 35 < VIscl
2a(t) j1503
Zo =15+ ]5= 720 -

=
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Example 3-29 (cont.)

(2) Norton's equivalent of the right circuit:

I
sc2 —J 5

/ =-J5

eq2

(3) Equivalent cirg/uits:

X

.20 . L.
=]-—=1-14=-13

L5 ACP j20 0 3 200 50

= N

cancel
V, =(j1.5-33)x 5
=—-/.5V

20.0°V
(13

S\

Isczv _j5 Q

H—E)
=

3 A
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Example 3-30

Example 3-30: Find Thevenin's and Norton's equivalent circuits.
A0 20

i H

A% 2

Soln.:

Find V... For the 2Q resistor, we have  Ix2 =-V, = V, =21
Next, apply KVL to find I:

V,—-Ixj4-(-4)+V, =0

~ A-2)-Ix4+4=0 = TI=_— L

= = A
4+j4  2,45°

V. =21-4=+2/(-45°)-4
=(1-j)-4=-3-]
= 1/10£(180°+18.4°) = /102 -161.6° V
3-74



Example 3-30 (cont.)

Find I .: Method 1 (Nodal Analysis) 40 v -0
First note that m I
VY = _VX —4 (1) —4V
Apply KCL at node V, : V& ) Loy
202V,
VX—Vy_I_Vx_Vy —0 e |

j4 2 —j2
VX_Vy+]2VX+2Vy: O

Vy = =(1+j2)V, (2)
From (1) and (2) V,+4=(1+j2)V, = V,=-j2
From (1) Vy=—4+j2
Hence I .= ML =-1-j2 =5,/-116.6° A

Find Z,:

Vv V10 -161.6° _
Z — _0C _ — ,\/EZ _ 450 — 1 . Q

€I, J5/-116.6° J
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Example 3-30 (Optional)

Find I..: Method 2 (Mesh Analysis) 40 V. 20
KVL on left mesh: > M ! I
V,-Ixj4-(-4)+V, =0 I >4V el
= 2V, —Ixj4+4=0 (1) VX<:> \‘, \‘, L.y
Next, KVL on right mesh: N QY ’
Vx - (—4) + Iscx(_jz) =0 = -
- VX = Iscxj2 -4 (2)

Eliminate V, from (1) and (2)
2V, = Ixj4 -4 = 2(I.xj2 —4)=1,.xj4 — 8
= I=1_+] (3)

Since V, = (I,.—I)x2 =2  Voltage across 2 O
From (2) —§2 =1.xj2 -4
= I.=-1-j2=+5/-116.6°A (4)

sc —

Find Z_ .

;q Ve _VI0£-1616°_ 5 e,
I J5,/-116.6°

-1-ij0
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3.3.7 AC Power
Root-Mean-Square Value

Root-Mean-Square (RMS) Definition
The Square Root, of the Mean, of the Squared Value, of a Signal.

For example, if the signal is V, cos(wt + 8), V, cos(wt + )
V, = 0, then v,

SN
\/%jHT[Vp cos(wt + 9)]2dt \/ \/
t

sz t+Tq Single-Phase AC Voltage in
= Tj E [1 + COS(Z(Ut 26)]dt Hong Kong:
t

Vims+ Foot-mean-square

0 value = 220 V,
V.2 t+T V V,: peak value, amplitude,
_|'p __p _ itude = 311 V.
= |— dt = — = ()_7()7]/p or magnitude :
2T ), V2 V,_p: = 2V, peak-to-peak
value = 622V,
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Average AC Power

I
DC Power +
P=VI
+
Average AC Power v
1 t+T —
P = ?j V, cos(wt + 8) X I, cos(wt + ¢) dt ‘
t
0
ol (ML
= [cos(8 — @) + cosQRwtA 6 + ¢)]dt
T J, 2 L, cos(wt + ¢)
V t+T +
= LP cos(0 — ¢) j .\
V I I V, cos(wt + 6)

—cos( —qb)— Cos(gb 0)

= Vimslrms cos( — Qb) Vimslrms COS(¢ 0)

cos(6 — ¢p)=cos(¢p — 8)= Power Factor
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Resistor, Capacitor, Inductor Average AC Power

Resistor
V,cos(wt + 0) and I, cos(wt + ¢) are in phase, i.e., 8 = ¢.

Pove= Vims Irms COS((P - 9) — V;”mslrmscos(oo)

Vems” _ Volp _ p"R _ Vy”

R 2 2 2R

= Vimslrms = IrmszR -

Capacitor
Current L, cos(wt + ¢) is leading voltage V,cos(wt + 6) by 90°,

l.e., ¢ =06+ 90°.
Pove = Vemslrms cos(¢ — 8) = cos(90°) = 0

Inductor
Voltage V,cos(wt + 0) is leading current I, cos(wt + ¢) by 90°,

l.e.,, 8 = ¢ + 90°.
Pave = Vimslyms cos(¢ — 8) = cos(—=90°) = 0
A capacitor or an inductor therefore consumes no average

power. It stores electrical energy over one half of the period and
releases it over the other half. 3-79



Complex Power

Define complex power in terms of the voltage and current phasors
(Remember our phasors represent peak values, not rms).

I,2¢

!

( 20)(I,2$)" (* complex conjugate)

r—\NI
+

== (V,20)|,2(-¢)] = 4(9 ®)

l\.)

VL, v, 1 <0
— Tcos(@ b)+j— sm(@ 0))
= Vimslrms cos(8 — ¢) +]Vrms Lmssin(@ — @) ‘
Complex Real or Average Reactive or
Power Power Quadrature
Power
(VA, kVA) (watt, W, kW) (VA, kVA)
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Example 3-31
(From Example 3-22)

Example 3-31: Compute the average AC power for each circuit
element in the following circuit.

(i ;

+

v(t)=100cos(1000t) (T‘D

A\N
WNY
<

o

)
—t

N’

- C=0.2mF| R=10Q

—_

Soln.:

We obtained the following results from Example 3-22:
. I 15 Q

Phasor circuit: S m +

NV
<

V=100.£0° [ —50=— 1003

=
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Example 3-31 (cont.)

Voltages and current values from Example 3-22:
V =10020°V  V, =2002(=90°)V [ =44.722(—26.57°) A

The peak values are:
, =100V  V,, =200V [, =4472A

Average AC Power:

(1) The inductor and capacitor consume zero average AC power.
(2) For the resistor

b Vop”  (200V)?
WeT2x100 2x10Q
(3) For the voltage source

= 2000 W

|74
Pe= —%COS[OO — (—26.57°)]

100V x 44.72 A

= 7 cos(26.57°) = —2000 W

The voltage source is delivering AC power to the resistor.
Conservation of energy holds ©
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Example 3-32
(From Example 3-30)

Example 3-32: Compute the average AC power for each circuit
element in the following circuit.

j4Q 520
i H

-4V +

I

20ZV, _
_I_

Soln.:
Voltages and current values from Example 3-30:

1
[ = \/—74(—45°) A V, = —21 = 22(180°)] =+/22135°V

The peak values are:

I
P2
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Example 3-22 (cont.)

j40 -j20
Average AC Power: >I m I I
(1) The inductor and capacitor -4V +
consume zero average AC V&> _ Voc
power. 20= Y, -
(2) For the resistor 1= -
Pye= Vo™ _ (ﬁv)z =0.5W
we2x20 2x2Q 7

(3) For the —4 = 4,(180°)-V independent voltage source

Al 4
P,,.=—cos[180° — (—45°)] = —=cos(225°) = —-1W

2 22
(4) For the dependent voltage source
Vil V2
P.= ——2Lcos[135° — (—45°)] = ———cos(180°) = 0.5W

2+/2

The independent voltage source is delivering AC power to both
the resistor and the dependent voltage source. Again
conservation of energy holds © 3-84



Chapter 3: AC Steady-State Analysis

3.1 Capacitors and Inductors
3.1.1 Capacitors
3.1.2 Inductors

3.2 Sinusoidal Excitation
3.2.1 Driving Capacitor with AC Source
3.2.2 Driving Inductor with AC Source
3.2.3 Driving RC Circuit with AC Source
3.2.4 Steady-State and Transient Responses (Appendix)
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Appendix: Driving RC Circuit with V cos(ot)

Consider driving an RC circuit with a sinusoidal voltage source,
and KVL gives

vs(t) = Ri(t) + v, (6) m) ’
v (t) = |
t : — V(D)
= V. cos(wt) = RC Vc(l)t( ) + v, (t) Vscos(ot)
dv,(t) 1 |74
= Vo (O +=v,(t) = =cos(wt), T =RC
dt T T
This is a first-order ordinary differential equation. The general
solution consists of two parts:
(1) A general solution to the homogeneous equation
dv,(t) 1
at + ;Vo (t)=0
Rearranging and integrating
dv,(t) dt t
= = — — 1 — —— K’
dln(vo(t)) (O = n(vo (t)) . +
we obtain the Part 1 solution: [vo(t) = Ket/7 ]
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Appendix: Driving RC Circuit with V_cos(wt) (2)

(2) A particular solution to the original differential equation
dv,(t) 1 K
7 + ~Vo (t) = ?Cos(a)t) (1)

for which, an educated guess is
v, (t) = A cos(wt) + B sin(wt)
dv, ()
dt
Substituting back into (1) gives

=

= —A wsin(wt) + B wcos(wt)

A B V.
—A wsin(wt) + B wcos(wt) + = cos(wt) + - sin(wt) = ?S cos(wt)

This must be true for all t. As sin(wt) and cos(wt) are
linearly independent of each other, the only way this can
happen is when the coefficients of the sin(wt) terms are

equal on both sides of the equation. Same must also be true

for the cos(wt) terms.
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Appendix: Driving RC Circuit with V_cos(wt) (3)

Matching the sin(wt) terms:

B
—Aw+?=0 = B = Awt

Matching the cos(wt) terms:

A 1 A VS
Bw+—=— = Aw?t+—=—=
T T T T
Giving
A= 1 V. and B = il V.
14 w272 S 14 w272 S

The Part 2 solution is thus given by

1 wT

T w2s? V, cos(wt) + T 22 V, sin(wt)

Vo (t) =
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Appendix: Driving RC Circuit with V_cos(wt) (4)

However, we would like to turn v, (t) into a cosine function only so
that it can be compared to the input voltage V,cos(wt). The standard
intermediate procedure goes as follows:

1 wT _
Vv, (t) = T w22 V; cos(wt) + T 7 V; sin(wt)

Vs 1 (w0 + Vs wT
= cos(w
V1 + w?t2V1 + w?t? V1 + w2121 + w?1?

Vs A
= cos 6 cos(wt) + sin @ sin(wt)
V1 + w22 V1 + w22

Vs
[ = Nemr cos(wt — 9)]

where 6 = tan™}(w7)

sin(wt)

This is the Part 2 solution in its final form!

3-A4



Appendix: Driving RC Circuit with V cos(wt) (5)

Going back to the original problem

of driving an RC circuit with a .+
sinusoidal voltage source, the v(t) = V_i(t)
general expression for the output v cos(ot) = Vo(V)
voltage is finally obtained by _

combining the two-part solutions
obtained earlier:

V.
v, (t) = Ke /7 + > cos(wt — 0)

V1 + w212
transient steady-state
response AC response

The first term is a transient response that decays exponentially with
time according to T = RC = time constant. The transient only lasts for
a few time constants. We will deal with transients in our later chapter.

The second term is the steady-state AC response. This is what we are
currently interested in.

The constant K can be determined by the initial condition, i.e., v,(0).
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