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3.1.1 Capacitor

Charge can be stored on the surface of a conductor that is 
surrounded by insulator. The circuit element that is used to store 
charge is the capacitor. A capacitor can be formed by using two 
metal plates separated by a dielectric material (insulator) (parallel 
plate capacitor).

The amount of charge stored is proportional to voltage, and is 
given by

Q = CV

with "Q" understood as having +Q on the positive plate and –Q 
on the negative plate, and C is the capacitance, and the unit is 
farad (F), with the dimension of [coulomb/volt].

Positive Charge (+Q)

Metal PlatesDielectric

Negative Charge (–Q)

V E
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Capacitance

Result is:
where

C = capacitance (in farad, F)
Q = charge (in coulomb, C)
V    = voltage (in volt, V)
E    = electric field (in V/m)
o = permittivity of free space (vacuum)

= 8.85410–12 F/m
 = ko = permittivity of dielectric material
k = dielectric constant (relative permittivity)
d = distance between plates
A = cross-sectional area of plates

Example 3-1: Mica capacitor has k = 5. If A = 0.5 cm0.5 cm, d 
= 100 m, then C = 58.8510–120.0050.005/10010–6 = 11 pF.

C oA k A

d d

 
 

The capacitance of the parallel plate capacitor can be derived from:
• Q = EA (Gauss’s Law)
• E = V/d
• Q = CV

Michael Faraday
1791 - 1867
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Capacitor Voltage and Current Relationship

Integrating once, we get: 

cv (t)
t

c c
0

1
v (0) i ( )d

C
   

ci (t)
cdq(t) dv (t)

C
dt dt

 

Current is the change in charge over time, and the differential 
form gives the (time domain) I-V relationship of the capacitor:

+   vc(t)   –

ic(t) ic(t)

q(t) -q(t)

C

Fundamental equation 

q(t) = Cvc(t)



Capacitor Blocks DC, Passes AC?

The capacitor dielectric, which is an 
insulator, allows no moving charges 
to pass through it. A capacitor 
therefore passes no current 
whatsoever: DC, AC or transient.

+   vc(t)   –

ic(t) ic(t)
C

However, modeled as a black box and viewed from external, the 
capacitor does give an illusion that a current passes through it, 
which could be a useful way of reasoning.

A capacitor eventually blocks a DC current because the capacitor 
voltage cannot increase forever. For a DC circuit, the capacitor is 
charged to a max. voltage set by the circuit. After which current 
stops and the capacitor behaves like an open circuit.

3-6
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Energy Stored in Capacitor

The energy stored in a capacitor is dependent on its charge 𝑄, 
voltage 𝑉, and capacitance 𝐶.

To move an infinitesimal charge 𝑑𝑞 from the negative plate to the 

positive plate (from a lower to a higher potential), the amount of 
work 𝑑𝑊 that must be done on 𝑑𝑞 is 𝑑𝑊 = 𝑣𝑑𝑞.

This work becomes the energy stored in the electric field of the 
capacitor. In order to charge the capacitor to a charge from 0 to 
𝑄, the total work required is

𝑊 = න
0

𝑊(𝑄)

𝑑𝑊 =න
0

𝑄

𝑣𝑑𝑞 = න
0

𝑄 𝑞

𝐶
𝑑𝑞 =

1

2

𝑄2

𝐶

Hence the energy stored in a capacitor is 

𝐸 =
1

2

𝑄2

𝐶
=
1

2
𝑄𝑉 =

1

2
𝐶𝑉2
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Example 3-2

Example 3-2: Given vc(t) across C as shown, find i(t) and i(1 s).

+
vc(t)

–

vc(t)

C=2 FSoln. For t < 2 s:

i(t) cdv (t)
C

dt


+20 –20
20

2
1

 

40A

Similarly, for 2 s < t < 4 s:

i(t) 40A 

and
i(1s) 40A

i(t)

i(t)
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Examples 3-3, 3-4

Example: 3-3: Given vc(t) across C as shown, find i(t).

+
vc(t) = 2t V
–

C=2 F

Soln:
i(t) = 2 F2 V/s = 4 A

Example: 3-4: Given vc(t) across C as shown, find i(t).

+
vc(t) = 2sin(t) V
–

C=2 F

i(t)

i(t)

Soln:
i(t) =

= –4cos(t) A

d(2sin(t))
2 2 2cos(t)

dt
    
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Examples 3-5, 3-6

Example: 3-5: Find the energy stored in the capacitor below.

+
Vc = 2 V
–

C = 2 F

Soln:
Ec =

= 4 J

2 2

c

1 1
CV 2 2

2 2
  

Example: 3-6: For C = 2 F, find vc(1 s) given that Vc(0) = –20 V 
and ic(t) = 40 A.

Soln:

cv (t)
t

c c
0

1
v (0) i ( )d

C
   

1

0

1
20 40d

2
   

20 20 0V   
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3.1.2 Inductor

When current passes through a medium, magnetic flux , and the 
unit is weber (Wb), is produced that bears the relation

(t) = L  i(t)

where L is the inductance, and the unit is henry (H). The circuit 
element that stores magnetic flux (magnetic energy) is the 
inductor. An inductor can be formed by wrapping a coil around a 
ferromagnetic material.

+
vℓ(t)
–

iℓ(t)

L

Faraday's Law of Induction:

v (t)
d (t)

dt




and
d (t) di

di dt


 

di
L

dt


l = 2r

A = a2v (t)

Integrating once,  i (t)
t

0

1
i (0) v ( )d

L
   
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Inductance

Let the coil has N turns. When the current iℓ(t) passes through 
the coil, the effective current is increased by N times, and the 
magnetic flux thus produced is also increased by N times. The 
inductance L of a coil inductor can be shown to be

L
2N A

l




where N = number of turns
A = cross-section area of magnetic flux (= a2)
l = length of magnetic path (= 2r)
 = permeability of material (H/m)
o = permeability of free space = 410–7 H/m
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Energy Stored in Inductor

Suppose that an inductor of inductance 𝐿 is connected to a 

variable DC voltage supply. The supply is adjusted so as to 
increase the current flowing through the inductor from zero to 
some final value 𝐼. As the current through the inductor is ramped 

up, a voltage 𝑣𝑙 = 𝐿
𝑑𝑖𝑙

𝑑𝑡
appears across the inductor, which acts to 

oppose the increase in the current. Clearly, work must be done 
against this voltage by the voltage supply in order to establish the 
current in the inductor. This work becomes the energy stored in 
the magnetic field of the inductor. The work done by the voltage 
supply during a time interval 𝑑𝑡 is

𝑑𝑊 = 𝑃𝑑𝑡 = 𝑣𝑙𝑖𝑙𝑑𝑡 = 𝐿
𝑑𝑖𝑙
𝑑𝑡

𝑖𝑙𝑑𝑡 = 𝐿𝑖𝑙𝑑𝑖𝑙

𝑊 = න
0

𝑊(𝐼)

𝑑𝑊 = න
0

𝐼

𝐿𝑖𝑙𝑑𝑖𝑙 =
1

2
𝐿𝐼2

𝐸 =
1

2
𝐿𝐼2 =

1

2
𝛷𝐼 =

1

2

𝛷2

𝐿

Hence the energy stored in an inductor is

The total work required is
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Examples 3-7

Example: 3-7: Find (t), vℓ(t) and Eℓ(t) of the inductor below.

Soln:
(t) = Liℓ(t) = 22t = 4t Wb

di (t)
L 2 2 4V

dt
   

+
vℓ(t)
–

iℓ(t)
=2t A

L=2 H

v (t)

E (t) 2 2 21 1
Li (t) 2 (2t) 4t  J

2 2
    
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Examples 3-8

2

20

64

10

8

-20

t/s0

-10

Example 3-8: Given iℓ(t) through L as shown, find vℓ(t) and 
vℓ(1.5s).

iℓ(t)

Soln. For t < 2 s:

v (t)
di (t)

L
dt



+20 –20

20
0.5

1
 

10V

+
vℓ(t)
–

iℓ(t)

L=0.5H
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3.2  Sinusoidal Excitation

In DC analysis, the driving forces are DC voltages/currents.

In many other cases, the driving term is a sinusoid, such as the 
AC (alternating current) voltage obtainable from the wall socket, 
and we are interested in the sinusoidal (AC) steady-state 
response. The steady state is the state of the circuit after a long 
time has elapsed since the application of the sinusoidal source.

A sinusoid wave is characterized by its oscillation frequency, 
magnitude and phase.

A

vs1(t) = Asin(1t)

t
T

=2f  (angular frequency in radian/sec), f (frequency in hertz), T 
= 1/f (period in sec),  (phase in radian or degree).

–A

t
T

–B

vs1(t)

vs2(t) = Bsin(2t+)

B

vs2(t)
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3.2.1  Driving Capacitor with Vscos(t)

Consider driving a capacitor C with a sinusoidal voltage source:

Recall trigonometric identities:

sin(+) = sincos + cossin
cos(+) = coscos – sinsin

C

ic(t)

ci (t)

sV cos( t) sv (t)

s
s

dv (t)
C CV sin( t)

dt
   

Hence,

ci (t) sCV cos( t /2)    

Vs

t

vs(t)

–Vs

CVs

t
ic(t)

The argument of ic(t) is +/2 radian 
earlier than vc(t), and the capacitor 
current leads the capacitor voltage 
by /2 radian (90o).



/2
–CVs

vs(t) =
Vscos(t)

+

–
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3.2.2  Driving Inductor with Vscos(t)

Consider driving an inductor L with a sinusoidal voltage source:

vs(t) =
Vscos(t) L

iℓ(t)

i (t)

sV cos( t) sv (t)

s

1
v (t ')dt '

L
 

s

1
V cos( t /2)

L
    


Vs

t

vs(t)

–Vs

Vs/L

t

iℓ(t)

The argument of iℓ(t) is /2 radian 
later than vℓ(t), and the inductor 
current lags the inductor voltage by 
/2 radian (90o).



/2

s

1
V sin( t)

L
  




–Vs/L

i (t)

+

–

+ constant*

* DC component ignored
for AC analysis
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Example 3-9

Example 3-9: Given an AC voltage source vs(t) = Vscos(t) with 
amplitude 10 V. Compute the current passing through a 
capacitor of 10 F if the frequency is (a) 1 kHz; (b) 10 kHz; 
and (c) 100 kHz.

Soln.:

ci (t)
sdv (t) d(10cos(2 ft))

C 10
dt dt


   

10 10 2 f sin(2 ft)      

62.8sin(2 100kt) A  

(a)

ci (t)

ci (t)

ci (t)

6.28sin(2 10kt) A  

0.628sin(2 1kt) A  

(b)

(c)

Note that a capacitor serves as an open circuit at low frequency
and short circuit at high frequency.
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Example 3-10

Soln.:

(a)

(b)

(c)

Note that an inductor serves as a short circuit at low frequency
and open circuit at high frequency.

1.59sin(2 100kt) A  

159sin(2 1kt) A  

15.9sin(2 10kt) A  i (t)

i (t)

i (t)

Example 3-10: Given an AC voltage source vs(t) = Vscos(t) with 
amplitude 10 V. Compute the current passing through a 
inductor of 10 H if the frequency is (a) 1 kHz; (b) 10 kHz; 
and (c) 100 kHz.

iℓ t =
1

L
නvs t dt =

1

10μ
න10 cos 2πft dt

=
10

10μ × 2πf
sin 2πft
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3.2.3  Driving RC Circuit with Vscos(t)

Consider driving an RC circuit with vs(t) = Vscos(t). KVL gives

sv (t) oRi(t) v (t) 


sV cos( t) o

o

dv (t)
RC v (t)

dt
 

 o s
o

dv (t) 1 V
v (t) cos( t)

dt
  
 

+

–
C

i(t)
vs(t) =

Vscos(t)

R
+

vo(t)

–

To solve the above equation, we need to assume that vo(t) takes 
the form of vo(t) = Acos(t) + Bsin(t), and we have to deal with 
both cos(t) and sin(t). The computation is very tedious (refer 
to Appendix). The solution contains both a transient response and 
a steady-state AC response, only the latter is covered in this 
chapter.

Qn. Do we have a more efficient way to arrive at the answer, 
especially one that does not need to solve differential 
equations?

Ans. Yes, we do. But we need to use complex numbers.

,    = RC
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3.3 Phasor Analysis

Phasor Representation Sinusoidal Waveform

0

 (Phase)

t

V1 (Magnitude)

t=0

t1
V1



Im

Re
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3.3.1 Complex Number and Operations

The simplest example of an imaginary number is the solution to

2x 1 0 
and

x 1  

The number         is not an integer, nor a real number, and it is 
regarded as an "imaginary" number in the olden days, and the 
name passes down to present time.

1

In computation, we could just treat        as an authentic number, 
and remember that                       . As this number occurs very 
often in mathematics, it is assigned the symbol "i". However, in 
electrical/electronic engineering, "i" is reserved for current, and 
we use the symbol "j" instead:

1
1 1 1    

j 1 
and

j j 1 



Re(z)

Im(z)
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Complex Number: x + jy

Consider the quadratic equation:

2x x 1 0  

The roots are

1,2x
2b b 4ac

2a

  


1 1 4

2

  


1 3
j

2 2
  

The number –1/2 + j    /2 consists of a real part (–1/2) and an 
imaginary part (j     /2), and is called a complex number. The 
usual symbol for complex number is "z":

3
3

z x jy 

where x and y are real numbers, and

x

y
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Complex Number: Addition and Subtraction

Consider two complex numbers z1 and z2:

1z a jb 

2z c jd 

Addition and Subtraction of Complex Numbers:

1 2z z (a c) j(b d)   

Example 3-11: Given z1 = –3 + j7 and z2 =  –j12, 
compute (a) z1 + z2, and (b) z2 – z1.

Soln.:

(a) (–3 + j7) + (0 + –j12) = (–3 + 0) + j(7 – 12) = –3 – j5

(b) (0 + –j12) – (–3 + j7) = (0 – –3) + j(–12 – 7) = +3 – j19
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Complex Number: Multiplication

Multiplication of Complex Numbers:

z1  z2 = (a + jb)  (c + jd)

= ac + jad + jbc – bd

= (ac – bd) + j(ad + bc)

Example 3-12: Compute (–3 + j7)  (8 + j4).

Soln.:

z1  z2 = (–3 + j7)  (8 + j4)

= –38 + j(–34) + j(78) – 74

= –52 + j44
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Complex Conjugate and Modulus

Before discussing division of complex number, let us introduce the 
complex conjugate of z, denoted as z*, first. For

z = a + jb

z* = a – jb

A complex number z when multiplied with its complex conjugate 
z* gives a real number:

z  z* = (a + jb)  (a – jb) = a2 – jab + jab + b2

= a2 + b2

The modulus of a complex number z, denoted as |z|, is defined as

| z |2 = zz* = a2 + b2

22 ba | z | =  0
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Complex Number: Division

Division of Complex Numbers:

1

2

z

z

a jb a jb c jd

c jd c jd c jd

  
  

  

2 2

(ac bd) j(bc ad)

c d

  




Example 3-13: Compute (–3 + j7) / (8 + j4).

Soln.:
3 j7

8 j4

 



3 j7 8 j4

8 j4 8 j4

  
 

 

2 2

( 24 28) j(56 12)

8 4

   




4 j68

80




0.05 j0.85 

2 2 2 2

ac bd bc ad
j

c d c d

 
  

 
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Complex Plane, Rectangular and Polar Forms

Complex numbers are conveniently drawn on the complex plane 
(z-plane). The x-axis is the real axis (Re-axis), and the y-axis is 
the imaginary axis (Im-axis).

a

jb
a+jb

0

r



On the z-plane, complex numbers can be expressed as

z = a + jb rectangular form

or z = rcos + jrsin

z-plane

r 2 2| z| a b  

a r cos  

b r sin  

with


1tan (b / a)

b
tan

a
 

2 2r a b 

Re(z)

Im(z)

Re

Im

rcos

rsin

 0

 0
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3.3.2  Euler's Equation of Complex Exponentials

From study of calculus (using Taylor and 
Maclaurin series expansions), we learn:

𝑒𝑥 = 1 + 𝑥 +
𝑥2

2!
+
𝑥3

3!
+
𝑥4

4!
+
𝑥5

5!
+ ⋯

sin(𝑥) = 𝑥 −
𝑥3

3!
+
𝑥5

5!
−⋯

cos(𝑥) = 1 −
𝑥2

2!
+
𝑥4

4!
− ⋯

Define

𝑒𝑧≡ 1 + 𝑧 +
𝑧2

2!
+
𝑧3

3!
+
𝑧4

4!
+
𝑧5

5!
+⋯

For z = 𝑗𝜃

𝑒𝑗𝜃 = 1 + 𝑗𝜃 +
𝑗𝜃 2

2!
+

𝑗𝜃 3

3!
+

𝑗𝜃 4

4!
+

𝑗𝜃 5

5!
+⋯

= 1 −
𝜃2

2!
+
𝜃4

4!
− ⋯ + 𝑗 𝜃 −

𝜃3

3!
+
𝜃5

5!
− ⋯

= cos 𝜃 + 𝑗 sin 𝜃 https://en.wikipedia.org/wiki/Leonhard_Euler

Leonhard Euler
1707 – 1783

Euler

https://en.wikipedia.org/wiki/Leonhard_Euler
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Euler's Equation of Complex Exponentials (cont.)

Euler's equation:

𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃

The complex exponential function 𝑒𝑗𝜃 can be viewed as more 
fundamental than the sin 𝜃 and cos 𝜃 functions, which are both 

derivable from 𝑒𝑗𝜃:

cos 𝜃 = ℛℯ 𝑒𝑗𝜃 , sin 𝜃 = ℐ𝓂 𝑒𝑗𝜃

In particular

𝑒𝑗𝜋 + 1 = 0

The Most Beautiful Formula in Mathematics

Compared with Einstein’s equation

𝐸 = 𝑚𝑐2

The Most Famous Equation in Physics
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Complex Numbers on Unit Circle

Example 3-14: Common complex numbers on the unit circle.

j0e 0e 1 

j /4e  o ocos 45 jsin45 

1 1
j

2 2
 

j /2e 
o ocos 90 jsin90 j  

je  o ocos180 jsin180 1   

+1

45o

30o–1

+j

–j

unit circle
j /6e  o ocos30 jsin30 

2 1
j

3 3
 

j3 /2e  o ocos270 jsin270 j   

j /6 oe 1 30  

j /4 oe 1 45  

o o1 270 1 90  

j /2e 

je 

j /2e 

Re

Im

∠𝜃 ≡ 𝑒𝑗𝜃 = cos 𝜃 + 𝑗 sin 𝜃
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Polar Form

A complex number z in polar form can be written as

z
jre 

In electrical/electronic engineering, the polar form is usually 
written as

z r 

The modulus r is better known as the magnitude of the complex 
number, and  as the phase.

r  0

r  0 and ∠𝜃 ≡ 𝑒𝑗𝜃
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Multiplication and Division in Polar Form

Multiplication in polar form:

3z 1 2j j

1 2 1 2z z re r e 
   

1 2j( )

1 2rr e  


or 3z
1 1 2 2r r   

1 2 1 2rr ( )    

Division in polar form:

3z
1

2

j

1 1
j

2 2

z re

z r e




 

1 2j( )

1 2(r / r )e  


or 3z 1 1

2 2

r

r






1 2 1 2(r / r ) ( )    
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Example 3-15

Example 3-15: Given z1 = 2 + j6 and z2 = –4 – j3. (a) Write the 
polar form of z1 and z2; (b) compute z1z2 in polar form and 
convert the answer into rectangular form; and (c) compute z1/z2

in polar form and convert the answer into rectangular form.

5–5

z1

5j

–5j

z2

Soln.:
(a) 1r

2 22 6 6.325  

1
1 o6

tan 71.57
2

 

1z
o6.325 71.57 

2r
2 24 3 5  

2
1 o3

tan 216.87
4

 
 



2z o5 216.87 

Special care is needed in converting the complex number in 
quadrants 2, 3, and 4.

Re

Im

(NOT 5∠36.87°)
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Example 3-15 (cont.)

(b) 1 2z z o o(6.325 5) (71.57 216.87 )   

(c) 1

2

z

z
o o6.325

(71.57 216.87 )
5

  

o o31.63 288.4 31.6 71.6   

o o31.63 (cos(288.4 ) jsin(288.4 ))  

9.98 j 30.0  

o o1.265 145.3 1.26 145.3    

o o1.265 (cos( 145.3 ) jsin( 145.3 ))    

1.04 j 0.72   

Note that usually answers with 3 significant digits are good 
enough, and we should use 4-digit accuracy for computing 
intermediate results.
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3.3.3 Complex Sinusoid as Excitation

Qn. What is the connection between complex number and 
circuit analysis?

Ans. The ingenuity is to replace the real sinusoidal source
Vscos(t) by the complex sinusoidal source Vse

jt.

C

{ic(t)}
C

{vs(t)}
C

=Vse
jtj t

sj CVe  

Use {vs(t)}
C to compute the capacitor current:

Let complex voltages and currents be expressed as {v(t)}C

and {i(t)}C:

vs(t) = Vscos(t)  {vs(t)}
C = Vse

jt

+

–

    
C

tj
s

s eV
dt

d
C

dt

)}t(v{d
C 

 C)}t(v{Cj s

C)}t(i{ c
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Two observations are in place.

(1) The real part of {ic (t)}C is the correct response to the original 
real source:

sj CV(cos( t) jsin( t))    

c si (t) CV sin( t)   

Re({ic(t)}C)=ic(t) and 1/jC Resembles Resistance

(2) The ratio of complex voltage to complex current resembles a 
"resistance":

1

j C



1

j C

The ultimate simplification is to use phasors.

+

–

 C)}t(i{ c

))}t(iRe({ c
C

C

C

 
)}t(i{

)}t(v{

c

s
{ic(t)}

C

{vs(t)}
C

)tcos(CVj)tsin(CV ss 
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Rotating Vector

Consider x(t) = Acos(t), and let us represent it as a rotating 
vector sweeping on a circle.

t=0

t1
t2

t3



Acos(t+)

x(t) can be thought to rotate on the complex plane, with 
{x(t)}C = Aejt. Each {x(ti)}

C is a point on the circle with 
radius A, and the real part is x(ti). 

t=0

t1

t3

t2

Acos(t)Acos(t)

A



A

t1

Acos(t)

Acos(t+)

0 t

Re

Im

Re

Im
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If x(t) has an initial phase, say, x(t) = Acos(t+), it can be 
represented by the right figure of the previous page. Note that all 
subsequent positions of the vector are known once the initial 
phase is determined, as the angular frequency  is given.

We can represent two functions, a(t) = Acos(t+) and b(t) = 
Bcos(t+), having the same  on the same diagram, specifying 
only the initial positions.

A

Re

Im

j j tAe e  j te  A

j j tBe e  j te  B

We then define the phasors of a(t) 
and b(t) as 

jAe A

jBe B

3.3.4  Phasors

B



A 

B 

C



 C)}t(a{

 C)}t(b{
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Operations of Phasors

It is clear that the term phasor refers to a rotating vector 
specified by its initial phase. For the time being, we use boldface 
letters to indicate phasors. Now, real signals a(t) and b(t) are 
represented as phasors A and B that are complex numbers:

A

B

A 

B 

1 2a ja 

1 2b jb 

Operations of phasors follow that of complex numbers. For addition:

C  A B C  1 2c jc 

1 1 2 2(a b ) j(a b )   

with

 1 2

1

c
tan

c
 1 2 2

1 1

a b
tan

a b
 




2

2

2

1 cc 
2

22
2

11 )ba()ba( C
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Example 3-16

Example 3-16:
Let a(t) = 10cos(30t+50o)

b(t) = 5cos(30t+125o)
Find c(t) = a(t) + b(t) using phasor method.
Evaluate c(t) at t = 0.1 s.

Soln.:

 A
o10 50 

 B
o5 125 

6.428 j7.660 

2.868 j4.096  

C 3.560 j11.756  A B



a(t) = 10cos(30t+50o)

b(t) = 5cos(30t+125o)

t0

a(t)

b(t)

c(t)

c(0.1) = 12.28cos(3 rad +73.15o)
= 12.28cos(3 + 73.15o/180o)
= 12.28cos(4.277) = 5.18

c(t) = 12.28cos(30t+73.15o)

= 12.2873.15o
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Examples 3-17, 3-18

Example 3-17: Let a(t) = 10cos(30t+50o) and d(t) =       
5sin(30t+125o), find e(t) = a(t) + d(t).

Soln.:
Note that sin() lags cos() by 90o. By writing sin() = cos( – 90o), 
we can express d(t) = 5cos(30t+35o). The phasors of a(t) and d(t) 
are now compatible. Hence,

D
o5 35  4.096 j2.868 

E
o14.9 45.0 10.524 j10.528  A D

 e(t) o14.9cos(30t 45.0 ) 

Here we can’t use sin() = cos(90o – ) as d(t) would be 5cos(–30t 
–35o) then, resulting in a vector rotating in the opposite direction.

Example 3-18: Let a(t) = 10sin(30t+50o) and f(t) = 
5sin(45t+125o), find g(t) = a(t) + f(t).

Soln.:
a(t) and f(t) have different frequencies and cannot be added 
together using phasors, and g(t) remains

g(t) = 10sin(30t+50o) + 5sin(45t+125o)
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Example 3-19

Example 3-19: Let m(t) = 10sin(30t+50o) and n(t) = 
5sin(30t+125o), find k(t) = m(t) + n(t).

Soln.:
Method 1:

k(t) o12.3sin(30t 73.2 ) 

Method 2:
Note that m(t) and n(t) are just a(t) and b(t) replaced with the 
sine function (or offset by –90o). We may simply add A and B to 
obtain C as in Example 3-16, but remember to put the answer 
with reference to sine, that is,

m(t) = 10sin(30t+50o) = 10cos(30t40o)  M = 1040o

n(t) = 5sin(30t+125o) = 5cos(30t+35o)  N = 535o

K = M + N = 1040o + 535o = 7.660  j6.428 + 4.096 + j2.868

= 11.756  j3.560 = 12.316.8o

 k(t) = 12.3cos(30t16.8o) = 12.3sin(30t+73.2o)
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d/dt  j and d  1/j

For
j te  A

we have

 j td
e

dt
 A  j tj e   A

which looks as if the differential operator d/dt is replaced by j:

d

dt
 j

Likewise, the integral operator d is replaced by 1/j:

t

d 
1

j

By using phasors, differential equations are turned to algebraic 
equations that are much easier to solve.

C)}t(a{

dt

)}t(a{d  C
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3.3.5  Impedance and Admittance

Differentiation and integration are due to the presence of 
capacitors and inductors. Let us reconsider driving a capacitor C 
with a voltage source vs(t) = Vscos(t+) = vc(t), and

j te  cI

 j td
C e

dt
 cV j tj C e   cV

j te  cV

Now, the capacitor current (the response) due to the forced 
oscillation must have the same frequency, that is,

In fact,

giving

cz (j ) c

c

V

I

1

j C




The ratio Vc/Ic = zc(j) is NOT a phasor, but is the impedance
(resembling resistance) of the capacitor C.

 C)}t(v{ c

 C)}t(i{ c

 C)}t(i{ c
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C

ic(t)

vs(t)

Admittance of Capacitor

Time-domain analysis and phasor analysis can be summarized as 
shown in the figures below, and from the phasor diagram, Ic

leads Vc by 90o is immediately observed.

Time-domain analysis

1/jC

Ic

Vs

Phasor analysis

Vc

cy (j ) c

c

I

V
j C 

Rewrite the I-V characteristic of the capacitor as

and yc(j) is the admittance (resembling conductance) of C. 
The capacitor current leads the source voltage by 90o is easily 
observed by writing

Ic

cI

+

–

j C  cV

Re

Im
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Impedance and Admittance of Inductor

Consider driving an inductor L with vs(t) = Vscos(t+) = vℓ(t):

j te  I

and
t

j1
e d

L
  V

j t1
e

j L



V


V

I
j L z (j ) 

The impedance of the inductor is jL, and the admittance is 

I

V

1

j L



y (j ) 

The inductor current will have the same frequency as vs(t):

j te  V

 I
1

j L



V j

L





V

The inductor current lags the inductor voltage by 90o.

 C)}t(v{ 

C)}t(i{ 

C)}t(i{ 
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Phasor Analysis of Inductor

Time-domain analysis and phasor analysis of the inductor is 
summarized in the figures below.

vs(t)

Time-domain analysis

jLVs

Phasor analysis

Iℓ

L

iℓ(t)

From the phasor diagram, Iℓ lags Vℓ by 90o is immediately 
observed:

Iℓ

Vℓ

+

–

Re

Im
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Impedance and admittance are equivalent to resistance and 
conductance in resistive networks, and they are not phasors. 
They are collectively known as immittance.
In general, immittance are complex, instead of just being 
imaginary as in the case of a capacitor or an inductor. 

Impedance and Admittance

Impedance: Z = R + jX R is resistance, X is reactance
Admittance: Y = G + jB G is conductance, B is susceptance

Reactance of Capacitor and Inductor (Unit is )

Capacitor:
1

j C



cjX  

c

1
X

C
 



Inductor: j L  jX   X L Z

cZ
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3.3.6  Phasor Analysis

Procedure of Phasor Analysis

(1) Express all time-dependent terms as cosine functions and 
then convert them to their phasor equivalents, for example, 
Vscos(t+)  Vs (=Vs). Voltages and currents are no 
longer functions of time, but are phasors. Moreover, the 
symbol of sinusoidal source can be replaced by the symbol of 
DC source.

(2) Substitute the capacitor C with 1/jC and the inductor L with 
jL as the impedance, while the resistor R remains 
unchanged. A phasor circuit is then obtained.

(3) Treat the phasor circuit as a resistive circuit, and apply the 
same DC analysis methods, e.g., KCL, KVL, superposition, to 
solve for the unknown parameters in terms of phasors.

(4) If time-domain solution is needed, convert the parameters in 
phasors back to their time-domain equivalents.
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Common Practice in Phasor Analysis

As phasor analysis is the principal method in analyzing sinusoidal 
steady state, engineers want to be more efficient in notations.

(1) Very often, phasors are not written in boldface. For 
convenience, we may just use the time-domain symbol as 
the phasor.

For example, for vs(t) = Vscos(t+), the phasor should be 
Vs, but we may use Vs, or simply, Vs (if =0) to 
represent the phasor instead.

(2) Capacitors and inductors are not represented by 1/jC and 
jL, but are still represented by C and L, but understood to 
use 1/jC and jL in actual computation.

Note: Real world signals must be expressed in cosine functions 
and not sine functions before converting to phasors. We get back 
to the real world by taking the real part, i.e., the cosine portion. 
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C

i(t)

vs(t) =
Vscos(t)

R
+

vo(t)

–

Phasor Analysis of RC Circuit

Equipped with phasor analysis, let us reconsider the RC circuit in 
p. 3-22.

In the phasor domain, R and C (R and 1/jC) form a voltage 
divider, and

oV
s

1 / j C
V

R 1 / j C




 

C

I

Vs

+

Vo

–

R

phasor circuit

s

1
V

1 j CR


 


In symbolic form, the above is already the answer!

+

–

oV
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Phasor Analysis of RC Circuit (cont.)

If numerical values are given for Vs, f, R and C, then we could 
obtain the numerical value of Vo. Hence, we need to compute

where

If time-domain result is needed, then convert the Vo phasor back 
to its time equivalent: 

ov (t) )tcos(
RC1

 V
222

s 




Vo =
1

1 + jωCR
Vs

=
1

1 + ω2C2R2∠ϕ
Vs

=
Vs

1 + ω2C2R2
∠(–ϕ)

ϕ = tan−1 ωCR
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Example 3-20

Example 3-20: Solve for vo(t) of the RC circuit below.

1 F

i(t)

1 k
+

vo(t)

–

10cos(21kt+25o)

Soln.:
Although the source has an initial phase of 25o, we may still use 
10 as the source (instead of 1025o), and just remember to 
reference to +25o when we put down the final answer.

1
10

1 j2 1k 1 1k
 

   

10

1 j6.283




o1.57 81  

ov (t) o1.57cos(2 1kt 56 )  

+

–

oV
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Example 3-21

Example 3-21: Solve for R and L of the circuit below, given 
f=100 Hz.

L

R
+

vo(t)

–

v(t)=cos(t+40o)

i(t)=cos(t–10o)

Soln.:
Clearly, when written in phasor notation we have

V

I



o

o

40

10



 

R j L  
o50 

o ocos50 jsin50 

R
ocos50 0.643 

L
osin50 0.766

L
0.766

2 100



1.22mH

+

–
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Example 3-22

Example 3-22: Compute the current i(t) and the output voltage 
vo(t) of the following circuit.

L=5 mH

R=10 

+

vo(t)

–

i(t)

v(t)=100cos(1000t)
C=0.2 mF

Soln.:
One may choose to compute the impedance of the L and C first:

j L j1000 5m j5   

1

j C

1 1
j5

j1000 0.2m j0.2
    



v(t)
o100 0 

+

–
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Example 3-22 (cont.)

10 

+

Vo

–

I

–j5 

j5 

1000o

Phasor circuit:

j5 ( j5 ||10)  
j5 10

j5
10 j5

 
 



j10 2 j
j5

2 j 2 j


  

 
10 j20

j5
4 1

 
 



Z

j5 2 j4   2 j 

I o

100

5 26.57




o44.72 26.57  

oV I ( j5 ||10)   I (2 j4)  

o o44.72 26.57 4.472 63.43     o200 90  

o5 26.57 

o20 5 26.57  

i(t) o44.7cos(1000t 26.6 )  (A) 

ov (t) o200cos(1000t 90 )  (V) 

Z

Z

V

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ZC=–j2 

Example 3-23

Example 3-23: (1) Find and plot all impedances on one z-plane; 
and (2) find and plot the current i(t) and all voltages on a 
second z-plane.

15.9 mH +
VC

–

i(t)

1.33 mF

+

–

4 

+VR–
+Vℓ–

o

sv (t) 12 2cos(377t 90 ) 

Soln.:
(1)

1

j C




1

j377 1.33m



j2 

j L  j6 

1
R j L

j C
   


4 j4 

Zℓ=+j6 

Z=4+j4 

R=4 

0

Im

Re

Z

CZ

Z

Impedance Diagram

=j37715.9m
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Example 3-23 (cont.)

(2)

I

o12 2 90

4 j4






o

o

12 2 90

4 2 45






o3 45   (A) 

RV I R 
o3 45 4  

o12 45   (V) 

V I j L   o3 45 j6   o18 135   (V) 

CV I / j C  o3 45 j2    o6 45   (V)  

VR

1245o

Im

Re
0

VC

Vℓ

18135o

6–45o

345o

I

Z

Vs

=377 rad/s

Phasor Diagram
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Example 3-24

Example 3-24: Find the unknown elements of Z if it consists of 
two components in series. 

Z

+

–
283cos(800t+150o) V

vs(t)

i(t) 11.3cos(800t+140o) A

Soln.
(1) Transform vs(t) and i(t) into phasors Vs and I:

sV o283 150 

I o11.3 140 

(2) Find z:
o

os
o

V 283 150
25.04 10

I 11.3 140


   



24.66 j4.348   

Z
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Example 3-24 (cont.)

(3) Because z has real and imaginary parts, and the two 
components are in series, and

R and L gives R + jL
R and C gives R + 1/jC = R  j/C

Hence,

Z = R + jL

(4) Equate

24.66 + j4.348 = R + j800L

we have

R 24.7 

L
4.348

5.44mH
800

 
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Example 3-25

Example 3-25: Using the same figure as in Example 3-24, find Z if 
it consists of two components in parallel.

Soln.
For the two components to be in parallel:

2 2 2

R j L LR( L jR)
R || j L

R j L R L

    
  

   
R and L gives

Solving this problem using impedance is quite tedious, but rather 
straightforward if admittance is used.

o

s

I
0.03994 10 0.03933 j0.006936

V
     

1 1

R j L
 



 R 25.4 

L
1

180mH
800 0.006936

 


Y
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Example 3-26

Example 3-26 (Nodal Analysis): Find vx(t) and i1(t).

+

–
10cos(1000t)

3

4mH

0.5mF

Soln.:
Zℓ = jL = j10004m = j4 
Zc = 1/jC = –j/(10000.5m)    = –j2 

3

j4
12Io10 0 V

j2

vx(t)

Vx

1I

i1(t)

2i1(t)
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Example 3-26 (cont.)

Apply KCL to node Vx :

−𝐼1 +
𝑉𝑥
j4
+
𝑉𝑥 − 2𝐼1
−j2

= 0

−𝐼1 +
10 − 3𝐼1

j4
+
10 − 5𝐼1
−j2

= 0

−j4𝐼1 + 10 − 3𝐼1 − 20 + 10𝐼1 = 0

𝐼1 =
10

7 − j4
=
10

65
7 + j4 = 1.0770 + j0.6154 = 1.24∠29.7°

From (1)     𝑉𝑥 = 10 − 3 1.0770 + j0.6154 = 7.02∠(−15.3)°

KVL along the left branch yields

𝑉𝑥 = 10 − 3𝐼1 (1)

 𝑖1(𝑡) = 1.24cos(1000𝑡 + 29.7°) A

𝑣𝑥(𝑡) = 7.02cos(1000𝑡 − 15.3°) V
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Example 3-27

Example 3-27 (Superposition): Find vx(t) of the circuit below.

+

–

i(t)

3cos(2t+30o) A
1 

0.25 F1 H 2 

v(t)

6cos(3t) V

vx(t)

Soln. Note that the two sources have different frequencies, and 
we may use superposition in combination of phasor analysis 
to solve this problem.

(1) Find Vx due to I first ( = 2):

o3 30 1

xV
j2 2 j2
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Example 3-27 (cont.)

The impedance of the inductor cancels that of the capacitor, and

xV o o3 30 (1|| 2) 2 30    


x i(t)
v (t) o2cos(2t 30 ) 

(2) Next, find Vx due to V ( = 3):

1

xV

j3 2 j1.333
o6 0

xV
o1

6 0
1 2 j3 j1.333

 
  

o o

o

6 0 6 0

3 j1.666 3.432 29.06

 
 

 
o1.75 29  

x v(t)
v (t) o1.75cos(3t 29 ) 

(3)
xv (t)

x xi(t) v(t)
v (t) v (t)  o o2cos(2t 30 ) 1.75cos(3t 29 )   
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Example 3-28

Example 3-28 (Norton's Equivalent ): Convert the circuit in the 
dotted area into its Norton's equivalent circuit and find v(t).

5mH

v(t)





+

–
100cos(1000t) V 0.2mF 10

Soln.:
Zℓ = jL = j10005m = j5 
Zc = 1/jC = –j/(10000.2m)    = –j5 

j5

j5 100V scI

100
j20A

j5
  scI

j5 ( j5)

j5 ( j5)

 
  

 
Zeq
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Example 3-28 (cont.)

j20A 10 V





Use the Norton circuit to compute v(t):

j20 10  V

o200 90  

 v(t) o200cos(1000t 90 ) V 

Note: The equivalent circuit is only good for one particular 
frequency!!!
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Example 3-29

Example 3-29 (Source Transformation): Find vx(t).

j2 A j15 

j5 
xV

j20  

o20 0  V

j5   j A

Soln.: There are many ways to solve this problem, and let us work 
out two Norton's equivalent circuits as shown.

j2 A j15 

j5 

sc1I
j15

j2 j1.5
j15 j5

 


j15 j5 j20  

(1) Norton's equivalent of the left circuit:

sc1I

Zeq1
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o20 0  V

j5   j A

Example 3-29 (cont.)

sc2I

20
j j j4 j3

j5
     



j5 

sc2I

(2) Norton's equivalent of the right circuit:

(3) Equivalent circuits:

j5   j3 Aj1.5 A j20 

xV

j20   j3 Aj5  j1.5 A

xV



cancel

xV (j1.5 j3) j5   

7.5V 

Zeq2
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Example 3-30

Example 3-30: Find Thevenin's and Norton's equivalent circuits.

xV

4V

j2 

2

j4

I

ocV






xV

Soln.:

Next, apply KVL to find I:

Vx – Ij4 – (–4) + Vx = 0
 2(–2I) – Ij4 + 4 = 0

For the 2 resistor, we have I2 = –Vx  Vx = –2I

 I
o

4 1
A

4 j4 2 45
 

 

Find Voc:

ocV

V6.16110)4.18180(10

j34)j1(

4)45(24I2






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Example 3-30 (cont.)

Find Isc: Method 1 (Nodal Analysis)
First note that

Vy = –Vx – 4                 (1)

Apply KCL at node Vy : xV

4V

j2 

2

j4



xV

scI

yV

Vx – Vy

j4
+

Vx

2
−

Vy

−j2
= 0

Vx – Vy + j2Vx + 2Vy = 0

Vy = –(1+j2)Vx (2)

From (1) and (2)     Vx + 4 = (1+j2)Vx      Vx= – j2
From (1)               Vy= –4 + j2

Hence                    Isc = 
Vy

−j2
= –1 – j2 = A6.1165 

Find Zeq:





 j1452

6.1165

6.16110

I

V

sc

oc
Zeq
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Example 3-30 (Optional)

Find Isc: Method 2 (Mesh Analysis)
KVL on left mesh:

Eliminate Vx from (1) and (2)
2Vx = Ij4 – 4 = 2(Iscj2 – 4)= Isc j4 – 8 

 I = Isc + j (3)

Find Zeq:

Vx – Ij4 – (–4) + Vx = 0
 2Vx – Ij4 + 4 = 0 (1)

Next, KVL on right mesh:
Vx – (–4) + Isc(–j2) = 0

 Vx = Iscj2 – 4 (2)

xV

4V

j2 

2

j4

I



xV

scI

yV

Since Vx = (Isc – I)2 = –j2
From (2)   –j2 = Iscj2 – 4
 Isc = –1 – j2 = (4)A6.1165 





 j1452

6.1165

6.16110

I

V

sc

oc
Zeq

Voltage across 2 
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3.3.7  AC Power
Root-Mean-Square Value

Root-Mean-Square (RMS) Definition
The Square Root, of the Mean, of the Squared Value, of a Signal. 

For example, if the signal is 𝑉𝑝 cos 𝜔𝑡 + 𝜃 , 

𝑉𝑝 ≥ 0, then

𝑉𝑟𝑚𝑠 =
1

𝑇
න
𝑡

𝑡+𝑇

𝑉𝑝 cos 𝜔𝑡 + 𝜃
2
𝑑𝑡

=
𝑉𝑝

2

𝑇
න
𝑡

𝑡+𝑇 1

2
1 + cos 2𝜔𝑡 + 2𝜃 𝑑𝑡

=
𝑉𝑝

2

2𝑇
න
𝑡

𝑡+𝑇

𝑑𝑡 =
𝑉𝑝

2
= 0.707𝑉𝑝

0

Single-Phase AC Voltage in 
Hong Kong:
𝑉𝑟𝑚𝑠: root-mean-square 

value = 220 V.
𝑉𝑝: peak value, amplitude, 

or magnitude = 311 V.
𝑉𝑝−𝑝: = 2𝑉𝑝, peak-to-peak 

value = 622 V.

𝑉𝑟𝑚𝑠

𝑉𝑝

𝑡
𝑇

–𝑉𝑝

𝑉𝑝 cos 𝜔𝑡 + 𝜃



Average AC Power

DC Power
𝑃 = 𝑉𝐼

+

V

–

I

Average AC Power

𝑃𝑎𝑣𝑒 =
1

𝑇
න
𝑡

𝑡+𝑇

𝑉𝑝 cos 𝜔𝑡 + 𝜃 × 𝐼𝑝 cos 𝜔𝑡 + 𝜙 𝑑𝑡

=
𝑉𝑝𝐼𝑝

𝑇
න
𝑡

𝑡+𝑇 1

2
cos 𝜃 − 𝜙 + cos 2𝜔𝑡 + 𝜃 + 𝜙 𝑑𝑡

=
𝑉𝑝𝐼𝑝

2𝑇
cos 𝜃 − 𝜙 න

𝑡

𝑡+𝑇

𝑑𝑡

=
𝑉𝑝𝐼𝑝
2

cos 𝜃 − 𝜙 =
𝑉𝑝𝐼𝑝
2

cos 𝜙 − 𝜃

= 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 cos 𝜃 − 𝜙 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 cos 𝜙 − 𝜃

0

cos 𝜃 − 𝜙 =cos 𝜙 − 𝜃 = Power Factor

+

𝑉𝑝 cos 𝜔𝑡 + 𝜃

–

𝐼𝑝 cos 𝜔𝑡 + 𝜙
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Resistor, Capacitor, Inductor Average AC Power

Resistor
𝑉𝑝cos 𝜔𝑡 + 𝜃 and 𝐼𝑝 cos 𝜔𝑡 + 𝜙 are in phase, i.e., 𝜃 = 𝜙.

𝑃𝑎𝑣𝑒= 𝑉𝑟𝑚𝑠 𝐼𝑟𝑚𝑠 cos 𝜙 − 𝜃 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠cos 0°

= 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 = 𝐼𝑟𝑚𝑠
2𝑅 =

𝑉𝑟𝑚𝑠
2

𝑅
=
𝑉𝑝𝐼𝑝

2
=
𝐼𝑝

2𝑅

2
=
𝑉𝑝

2

2𝑅

Capacitor
Current 𝐼𝑝 cos 𝜔𝑡 + 𝜙 is leading voltage 𝑉𝑝cos 𝜔𝑡 + 𝜃 by 90°, 

i.e., 𝜙 = 𝜃 + 90°.

𝑃𝑎𝑣𝑒 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 cos 𝜙 − 𝜃 = cos 90° = 0

Inductor
Voltage 𝑉𝑝cos 𝜔𝑡 + 𝜃 is leading current 𝐼𝑝 cos 𝜔𝑡 + 𝜙 by 90°, 

i.e., 𝜃 = 𝜙 + 90°.

𝑃𝑎𝑣𝑒 = 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 cos 𝜙 − 𝜃 = cos −90° = 0

A capacitor or an inductor therefore consumes no average
power. It stores electrical energy over one half of the period and 
releases it over the other half. 3-79



Complex Power

+

𝑉𝑝∠𝜃

–

𝐼𝑝∠𝜙

Define complex power in terms of the voltage and current phasors
(Remember our phasors represent peak values, not rms).

𝑆 ≡
1

2
𝑉𝑝∠𝜃 𝐼𝑝∠𝜙

∗

=
1

2
𝑉𝑝∠𝜃 𝐼𝑝∠ −𝜙 =

𝑉𝑝𝐼𝑝

2
∠ 𝜃 − 𝜙

=
𝑉𝑝𝐼𝑝

2
cos 𝜃 − 𝜙 + 𝑗

𝑉𝑝𝐼𝑝

2
sin 𝜃 − 𝜙

= 𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠 cos 𝜃 − 𝜙 + 𝑗𝑉𝑟𝑚𝑠𝐼𝑟𝑚𝑠sin 𝜃 − 𝜙

(* complex conjugate)

Complex 
Power

Real or Average
Power

Reactive or 
Quadrature

Power

(VA, kVA) (watt, W, kW) (VA, kVA)
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Example 3-31
(From Example 3-22)

Example 3-31: Compute the average AC power for each circuit 
element in the following circuit.

L=5 mH

R=10 

+

vo(t)

–

i(t)

v(t)=100cos(1000t)
C=0.2 mF

Soln.:
We obtained the following results from Example 3-22:

+

–

10 

+

Vo

–

I

–j5 

j5 

V=1000o

Phasor circuit:

Z
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Example 3-31 (cont.)

Voltages and current values from Example 3-22:
𝑉 = 100∠0° V 𝑉𝑜 = 200∠ −90° V 𝐼 = 44.72∠ −26.57° A

The peak values are:
𝑉𝑝 = 100 V 𝑉𝑜𝑝 = 200 V 𝐼𝑝 = 44.72 A

Average AC Power:
(1) The inductor and capacitor consume zero average AC power.
(2) For the resistor

𝑃𝑎𝑣𝑒=
𝑉𝑜𝑝

2

2 × 10 Ω
=

200 𝑉 2

2 × 10 Ω
= 2000 W

(3) For the voltage source

𝑃𝑎𝑣𝑒= −
𝑉𝑝𝐼𝑝

2
cos 0° − −26.57°

= −
100 𝑉 × 44.72 𝐴

2
cos 26.57° = −2000 W

The voltage source is delivering AC power to the resistor. 
Conservation of energy holds 



Voltages and current values from Example 3-30:

𝐼 =
1

2
∠ −45° A 𝑉𝑥 = −2𝐼 = 2∠ 180° 𝐼 = 2∠135° V

The peak values are:

𝐼𝑝 =
1

2
A 𝑉𝑥𝑝 = 2 V
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Example 3-32
(From Example 3-30)

Example 3-32: Compute the average AC power for each circuit 
element in the following circuit.

Soln.:

xV

4V

j2 

2

j4

I

ocV






xV



Example 3-22 (cont.)

xV

4V

j2 

2

j4

I

ocV






xV

𝑃𝑎𝑣𝑒=
𝑉𝑥𝑝

2

2 × 2 Ω
=

2 𝑉
2

2 × 2 Ω
= 0.5 W

(3) For the −4 = 4∠ 180° -V independent voltage source

𝑃𝑎𝑣𝑒=
4𝐼𝑝

2
cos 180° − −45° =

4

2 2
cos 225° = −1W

(4) For the dependent voltage source

𝑃𝑎𝑣𝑒= −
𝑉𝑥𝑝𝐼𝑝

2
cos 135° − −45° = −

2

2 2
cos 180° = 0.5 W

The independent voltage source is delivering AC power to both 
the resistor and the dependent voltage source. Again 
conservation of energy holds 

Average AC Power:
(1) The inductor and capacitor 

consume zero average AC 
power.

(2) For the resistor
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Chapter 3: AC Steady-State Analysis

3.1 Capacitors and Inductors
3.1.1  Capacitors
3.1.2  Inductors

3.2 Sinusoidal Excitation
3.2.1  Driving Capacitor with AC Source
3.2.2  Driving Inductor with AC Source
3.2.3  Driving RC Circuit with AC Source
3.2.4  Steady-State and Transient Responses (Appendix)

3.3 Phasor Analysis
3.3.1  Complex Number and Operations
3.3.2  Euler's Equation of Complex Exponentials
3.3.3  Complex Sinusoidal as Excitation
3.3.4  Phasors
3.3.5  Impedance and Admittance
3.3.6  Phasor Analysis
3.3.7  AC Power

Appendix: Driving RC Circuit with AC Source – Complete Solution



This is a first-order ordinary differential equation. The general 
solution consists of two parts:
(1) A general solution to the homogeneous equation

𝑑v𝑜 t

𝑑𝑡
+
1

𝜏
v𝑜 t = 0

Rearranging and integrating

𝑑ln vo t =
𝑑v𝑜 t

v𝑜 t
= −

𝑑𝑡

𝜏
, ln v𝑜 t = −

𝑡

𝜏
+ 𝐾′

we obtain the Part 1 solution: v𝑜 t = 𝐾𝑒−𝑡/𝜏 3-A1

Appendix: Driving RC Circuit with Vscos(t)

Consider driving an RC circuit with a sinusoidal voltage source, 
and KVL gives

+

–
C

i(t)
vs(t) =

Vscos(t)

R
+

vo(t)

–

v𝑠 t = 𝑅𝑖 𝑡 + v𝑜 t

⇒ 𝑉𝑠 cos 𝜔𝑡 = 𝑅𝐶
𝑑v𝑜 t

𝑑𝑡
+ v𝑜 t

⇒
𝑑v𝑜 t

𝑑𝑡
+
1

𝜏
v𝑜 t =

𝑉𝑠
𝜏
cos 𝜔𝑡 , 𝜏 = 𝑅𝐶



3-A2
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(2) A particular solution to the original differential equation

𝑑v𝑜 t

𝑑𝑡
+
1

𝜏
v𝑜 t =

𝑉𝑠
𝜏
cos 𝜔𝑡 (1)

for which, an educated guess is

v𝑜 t = 𝐴 cos 𝜔𝑡 + 𝐵 sin 𝜔𝑡

⇒
𝑑v𝑜 t

𝑑𝑡
= −𝐴𝜔sin 𝜔𝑡 + 𝐵𝜔cos 𝜔𝑡

Substituting back into (1) gives

−𝐴𝜔sin 𝜔𝑡 + 𝐵𝜔cos 𝜔𝑡 +
𝐴

𝜏
cos 𝜔𝑡 +

𝐵

𝜏
sin 𝜔𝑡 =

𝑉𝑠
𝜏
cos 𝜔𝑡

This must be true for all 𝑡. As sin 𝜔𝑡 and cos 𝜔𝑡 are 

linearly independent of each other, the only way this can 
happen is when the coefficients of the sin 𝜔𝑡 terms are 

equal on both sides of the equation. Same must also be true 
for the cos 𝜔𝑡 terms.
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Matching the sin 𝜔𝑡 terms:

−𝐴𝜔 +
𝐵

𝜏
= 0 ⇒ 𝐵 = 𝐴𝜔𝜏

Giving

𝐴 =
1

1 + 𝜔2𝜏2
𝑉𝑠 B =

𝜔𝜏

1 + 𝜔2𝜏2
𝑉𝑠and

Matching the cos 𝜔𝑡 terms:

𝐵𝜔 +
𝐴

𝜏
=
𝑉𝑠
𝜏

⇒ 𝐴𝜔2𝜏 +
𝐴

𝜏
=
𝑉𝑠
𝜏

The Part 2 solution is thus given by

v𝑜 t =
1

1 + 𝜔2𝜏2
𝑉𝑠 cos 𝜔𝑡 +

𝜔𝜏

1 + 𝜔2𝜏2
𝑉𝑠 sin 𝜔𝑡
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However, we would like to turn vo t into a cosine function only so 
that it can be compared to the input voltage 𝑉𝑠cos 𝜔𝑡 . The standard 

intermediate procedure goes as follows:

v𝑜 t =
1

1 + 𝜔2𝜏2
𝑉𝑠 cos 𝜔𝑡 +

𝜔𝜏

1 + 𝜔2𝜏2
𝑉𝑠 sin 𝜔𝑡

=
𝑉𝑠

1 + 𝜔2𝜏2

1

1 + 𝜔2𝜏2
cos 𝜔𝑡 +

𝑉𝑠

1 + 𝜔2𝜏2

𝜔𝜏

1 + 𝜔2𝜏2
sin 𝜔𝑡

=
𝑉𝑠

1 + 𝜔2𝜏2
cos 𝜃 cos 𝜔𝑡 +

𝑉𝑠

1 + 𝜔2𝜏2
sin 𝜃 sin 𝜔𝑡

=
𝑉𝑠

1 + 𝜔2𝜏2
cos 𝜔𝑡 − 𝜃

where 𝜃 = tan−1 𝜔𝜏

This is the Part 2 solution in its final form! 
1

𝜔𝜏

𝜃
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Going back to the original problem 
of driving an RC circuit with a 
sinusoidal voltage source, the 
general expression for the output 
voltage is finally obtained by 
combining the two-part solutions 
obtained earlier:

+

–
C

i(t)
vs(t) =

Vscos(t)

R
+

vo(t)

–

v𝑜 t = 𝐾𝑒−𝑡/𝜏 +
𝑉𝑠

1 + 𝜔2𝜏2
cos 𝜔𝑡 − 𝜃

The first term is a transient response that decays exponentially with 
time according to 𝜏 = 𝑅𝐶 = time constant. The transient only lasts for 

a few time constants. We will deal with transients in our later chapter.

The second term is the steady-state AC response. This is what we are 
currently interested in.

The constant 𝐾 can be determined by the initial condition, i.e., v𝑜 0 .

transient
response

steady-state
AC response


